Show simple item record

DIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN mdx MICE

dc.contributor.authorFaulkner, John A.en_US
dc.contributor.authorNg, Rainer N.en_US
dc.contributor.authorDavis, Carol S.en_US
dc.contributor.authorLi, Shengen_US
dc.contributor.authorChamberlain, Jeffrey S.en_US
dc.date.accessioned2010-06-01T19:50:18Z
dc.date.available2010-06-01T19:50:18Z
dc.date.issued2008-07en_US
dc.identifier.citationFaulkner, John A; Ng, Rainer; Davis, Carol S; Li, Sheng; Chamberlain, Jeffrey S (2008). "DIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN mdx MICE." Clinical and Experimental Pharmacology and Physiology 35(7): 725-729. <http://hdl.handle.net/2027.42/72970>en_US
dc.identifier.issn0305-1870en_US
dc.identifier.issn1440-1681en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72970
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18215182&dopt=citationen_US
dc.description.abstract1.  Duchenne muscular dystrophy (DMD), a severe muscle wasting disease of young boys with an incidence of one in every 3000, results from a mutation in the gene that encodes dystrophin. The absence of dystrophin expression in skeletal muscles and heart results in the degeneration of muscle fibres and, consequently, severe muscle weakness and wasting. The mdx mouse discovered in 1984, with some adjustments for differences, has proven to be an invaluable model for scientific investigations of dystrophy. 2.  The development of the diaphagm strip preparation provided an ideal experimental model for investigations of skeletal muscle impairments in structure and function induced by interactions of disease- and age-related factors. Unlike the limb muscles of the mdx mouse, which show adaptive changes in structure and function, the diaphragm strip preparation reflects accurately the deterioration in muscle structure and function observed in boys with DMD. 3.  The advent of sophisticated servo motors and force transducers interfaced with state-of-the-art software packages to drive complex experimental designs during the 1990s greatly enhanced the capability of the mdx mouse and the diaphragm strip preparation to evaluate more accurately the impact of the disease on the structure–function relationships throughout the life span of the mouse. 4.  Finally, during the 1990s and through the early years of the 21st century, many promising, sophisticated genetic techniques have been designed to ameliorate the devastating impact of muscular dystrophy on the structure and function of skeletal muscles. During this period of rapid development of promising genetic therapies, the combination of the mdx mouse and the diaphragm strip preparation has provided an ideal model for the evaluation of the success, or failure, of these genetic techniques to improve dystrophic muscle structure, function or both. With the 2 year life span of the mdx mouse, the impact of age-related effects can be studied in this model.en_US
dc.format.extent151972 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Asiaen_US
dc.rights© 2008 Blackwell Publishingen_US
dc.subject.otherContractilityen_US
dc.subject.otherContraction-induced Injuryen_US
dc.subject.otherDuchenne Muscular Dystrophyen_US
dc.subject.otherForce Deficiten_US
dc.subject.otherNormalized Poweren_US
dc.subject.otherSpecific Forceen_US
dc.titleDIAPHRAGM MUSCLE STRIP PREPARATION FOR EVALUATION OF GENE THERAPIES IN mdx MICEen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelPharmacy and Pharmacologyen_US
dc.subject.hlbsecondlevelPhysiologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, Michigan,en_US
dc.contributor.affiliationother* Department of Molecular and Integrative Physiology, School of Medicine,en_US
dc.contributor.affiliationotherDepartment of Neurology anden_US
dc.contributor.affiliationotherThe Senator Paul D Wellstone Muscular Dystrophy Cooperative Research Center, University of Washington, School of Medicine, Seattle, Washington, USAen_US
dc.identifier.pmid18215182en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72970/1/j.1440-1681.2007.04865.x.pdf
dc.identifier.doi10.1111/j.1440-1681.2007.04865.xen_US
dc.identifier.sourceClinical and Experimental Pharmacology and Physiologyen_US
dc.identifier.citedreferenceErvasti JM. Costameres: The Achilles’ heel of Herculean muscle. J. Biol. Chem. 2003; 278: 13 591 – 4.en_US
dc.identifier.citedreferenceWilliams MW, Bloch RJ. Extensive but coordinated reorganization of the membrane skeleton in myofibers of dystrophic (mdx) mice. J. Cell Biol. 1999; 144: 1259 – 70.en_US
dc.identifier.citedreferenceEmery AE, Muntoni F. Duchenne Muscular Dystrophy. Oxford University Press, Oxford. 2003.en_US
dc.identifier.citedreferenceBulfield G, Siller WG, Wight PA, Moore KJ. X chromosome-linked muscular dystrophy ( mdx ) in the mouse. Proc. Natl Acad. Sci. USA 1984; 81: 1189 – 92.en_US
dc.identifier.citedreferenceLynch GS, Hinkle RT, Chamberlain JS, Brooks SV, Faulkner JA. Force and power output of fast and slow skeletal muscles from mdx mice 6–28 months old. J. Physiol. 2001; 535: 591 – 600.en_US
dc.identifier.citedreferenceChamberlain JS, Metzger J, Reyes M, Townsend D, Faulkner JA. Dystrophin-deficient mdx mice display a reduced life span and are susceptible to spontaneous rhabdomyosarcoma. FASEB J. 2007; 21: 2195 – 204.en_US
dc.identifier.citedreferenceDupont-Versteegden EE, McCarter RJ. Differential expression of muscular dystrophy in diaphragm versus hindlimb muscles of mdx mice. Muscle Nerve 1992; 15: 1105 – 10.en_US
dc.identifier.citedreferenceBrooks SV. Rapid recovery following contraction-induced injury to in situ skeletal muscles in mdx mice. J. Muscle Res. Cell Motil. 1998; 19: 179 – 87.en_US
dc.identifier.citedreferenceConsolino CM, Brooks SV. Susceptibility to sarcomere injury induced by single stretches of maximally activated muscles of mdx mice. J. Appl. Physiol. 2004; 96: 633 – 8.en_US
dc.identifier.citedreferenceDelloRusso C, Crawford RW, Chamberlain JS, Brooks SV. Tibialis anterior muscles in mdx mice are highly susceptible to contraction-induced injury. J. Muscle Res. Cell Motil. 2001; 22: 467 – 75.en_US
dc.identifier.citedreferenceDelloRusso C, Scott JM, Hartigan-O’Connor D et al. Functional correction of adult mdx mouse muscle using gutted adenoviral vectors expressing full-length dystrophin. Proc. Natl Acad. Sci. USA 2002; 99: 12 979 – 84.en_US
dc.identifier.citedreferencePetrof BJ, Shrager JB, Stedman HH, Kelly AM, Sweeney HL. Dystrophin protects the sarcolemma from stresses developed during muscle contraction. Proc. Natl Acad. Sci. USA 1993; 90: 3710 – 14.en_US
dc.identifier.citedreferencePetrof BJ, Stedman HH, Shrager JB, Eby J, Sweeney HL, Kelly AM. Adaptations in myosin heavy chain expression and contractile function in dystrophic mouse diaphragm. Am. J. Physiol. 1993; 265: C834 – 41.en_US
dc.identifier.citedreferenceWeller B, Karpati G, Carpenter S. Dystrophin-deficient mdx muscle fibers are preferentially vulnerable to necrosis induced by experimental lengthening contractions. J. Neurol. Sci. 1990; 100: 9 – 13.en_US
dc.identifier.citedreferenceWernig A, Irintchev A, Lange G. Functional effects of myoblast implantation into histoincompatible mice with or without immunosuppression. J. Physiol. 1995; 484: 493 – 504.en_US
dc.identifier.citedreferenceCox GA, Cole NM, Matsumura K et al. Overexpression of dystrophin in transgenic mdx mice eliminates dystrophic symptoms without toxicity. Nature 1993; 364: 725 – 9.en_US
dc.identifier.citedreferenceDeconinck N, Ragot T, Marechal G, Perricaudet M, Gillis JM. Functional protection of dystrophic mouse (mdx) muscles after adenovirus-mediated transfer of a dystrophin minigene. Proc. Natl Acad. Sci. USA 1996; 93: 3570 – 4.en_US
dc.identifier.citedreferenceHarper SQ, Hauser MA, DelloRusso C et al. Modular flexibility of dystrophin: Implications for gene therapy of Duchenne muscular dystrophy. Nat. Med. 2002; 8: 253 – 61.en_US
dc.identifier.citedreferenceLi S, Kimura E, Ng R et al. A highly functional mini-dystrophin/GFP fusion gene for cell and gene therapy studies of Duchenne muscular dystrophy. Hum. Mol. Genet. 2006; 15: 1610 – 22.en_US
dc.identifier.citedreferenceCrawford GE, Faulkner JA, Crosbie RH, Campbell KP, Froehner SC, Chamberlain JS. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J. Cell Biol. 2000; 150: 1399 – 410.en_US
dc.identifier.citedreferenceDeconinck N, Rafael JA, Beckers-Bleukx G et al. Consequences of the combined deficiency in dystrophin and utrophin on the mechanical properties and myosin composition of some limb and respiratory muscles of the mouse. Neuromusc. Disord. 1998; 8: 362 – 70.en_US
dc.identifier.citedreferenceFaulkner JA, Brooks SV, Dennis RG, Lynch GS. The functional status of dystrophic muscles and functional recovery by skeletal muscles following myoblast transfer. Basic Appl. Myol. 1997; 7: 257 – 64.en_US
dc.identifier.citedreferenceLynch GS, Rafael JA, Hinkle RT, Cole NM, Chamberlain JS, Faulkner JA. Contractile properties of diaphragm muscle segments from old mdx and old transgenic mdx mice. Am. J. Physiol. 1997; 272: C2063 – 8.en_US
dc.identifier.citedreferenceStedman HH, Sweeney HL, Shrager JB et al. The mdx mouse diaphragm reproduces the degenerative changes of Duchenne muscular dystrophy. Nature 1991; 352: 536 – 9.en_US
dc.identifier.citedreferenceFaulkner JA. Power output of the human diaphragm. Am. Rev. Respir. Dis. 1986; 134: 1081 – 3.en_US
dc.identifier.citedreferenceFaulkner JA, Maxwell LC, Ruff GL, White TP. The diaphragm as a muscle: Contractile properties. Am. Rev. Respir. Dis. 1979; 119: 89 – 92.en_US
dc.identifier.citedreferenceRitchie JM. The relation between force and velocity of shortening in rat muscle. J. Physiol. 1954; 123: 633 – 9.en_US
dc.identifier.citedreferenceRafael JA, Sunada Y, Cole NM, Campbell KP, Faulkner JA, Chamberlain JS. Prevention of dystrophic pathology in mdx mice by a truncated dystrophin isoform. Hum. Mol. Genet. 1994; 3: 1725 – 33.en_US
dc.identifier.citedreferenceBrooks SV, Faulkner JA. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 1988; 404: 71 – 82.en_US
dc.identifier.citedreferencePhillips SK, Bruce SA, Woledge RC. In mice, the muscle weakness due to age is absent during stretching. J. Physiol. 1991; 437: 63 – 70.en_US
dc.identifier.citedreferenceErvasti JM, Campbell KP. A role for the dystrophin–glycoprotein complex as a transmembrane linker between laminin and actin. J. Cell Biol. 1993; 122: 809 – 23.en_US
dc.identifier.citedreferenceFaulkner JA. Terminology for contractions of muscles during shortening, while isometric, and during lengthening. J. Appl. Physiol. 2003; 95: 455 – 9.en_US
dc.identifier.citedreferenceMcCully KK, Faulkner JA. Injury to skeletal muscle fibers of mice following lengthening contractions. J. Appl. Physiol. 1985; 59: 119 – 26.en_US
dc.identifier.citedreferenceBrooks SV, Zerba E, Faulkner JA. Injury to muscle fibres after single stretches of passive and maximally stimulated muscles in mice. J. Physiol. 1995; 488: 459 – 69.en_US
dc.identifier.citedreferenceZerba E, Komorowski TE, Faulkner JA. Free radical injury to skeletal muscles of young, adult, and old mice. Am. J. Physiol. 1990; 258: C429 – 35.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.