Weaving the neuronal net with target-derived fibroblast growth factors
dc.contributor.author | Umemori, Hisashi | en_US |
dc.date.accessioned | 2010-06-01T19:50:25Z | |
dc.date.available | 2010-06-01T19:50:25Z | |
dc.date.issued | 2009-04 | en_US |
dc.identifier.citation | Umemori, Hisashi (2009). "Weaving the neuronal net with target-derived fibroblast growth factors." Development, Growth & Differentiation 51(3 Phylogeny and Ontogeny of the Nervous System ): 263-270. <http://hdl.handle.net/2027.42/72972> | en_US |
dc.identifier.issn | 0012-1592 | en_US |
dc.identifier.issn | 1440-169X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/72972 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19210540&dopt=citation | en_US |
dc.format.extent | 897428 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Asia | en_US |
dc.rights | Journal compilation © 2009 Japanese Society of Developmental Biologists | en_US |
dc.subject.other | Axon Guidance | en_US |
dc.subject.other | Cell Adhesion Molecules | en_US |
dc.subject.other | Fibroblast Growth Factors | en_US |
dc.subject.other | Synaptic Differentiation | en_US |
dc.subject.other | Target Recognition | en_US |
dc.title | Weaving the neuronal net with target-derived fibroblast growth factors | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Molecular, Cellular and Developmental Biology | en_US |
dc.subject.hlbtoplevel | Health Sciences | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.identifier.pmid | 19210540 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/72972/1/j.1440-169X.2008.01079.x.pdf | |
dc.identifier.doi | 10.1111/j.1440-169X.2008.01079.x | en_US |
dc.identifier.source | Development, Growth & Differentiation | en_US |
dc.identifier.citedreference | Beer, H. D., Florence, C., Dammeier, J., McGuire, L., Werner, S. & Duan, D. R. 1997. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression. Oncogene 15, 2211 – 2218. | en_US |
dc.identifier.citedreference | Benson, D. L., Colman, D. R. & Huntley, G. W. 2001. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2, 899 – 909. | en_US |
dc.identifier.citedreference | Bieber, A. J., Snow, P. M., Hortsch, M., Patel, N. H., Jacobs, J. R., Traquina, Z. R., Schilling, J. & Goodman, C. S. 1989. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59 ( 3 ), 447 – 460. | en_US |
dc.identifier.citedreference | Biederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E. T. & SÜdhof, T. C. 2002. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525 – 1531. | en_US |
dc.identifier.citedreference | Buchanan, J., Sun, Y. A. & Poo, M. M. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J. Neurosci. 9, 1540 – 1554. | en_US |
dc.identifier.citedreference | Cambon, K., Hansen, S. M., Venero, C., Herrero, A. I., Skibo, G., Berezin, V., Bock, E. & Sandi, C. 2004. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 24 ( 17 ), 4197 – 4204. | en_US |
dc.identifier.citedreference | Dai, Z. & Peng, H. B. 1995. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J. Neurosci. 15 ( 8 ), 5466 – 5475. | en_US |
dc.identifier.citedreference | Dono, R. 2003. Fibroblast growth factors as regulators of central nervous system development and function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R867 – R881. | en_US |
dc.identifier.citedreference | Dono, R., Texido, G., Dussel, R., Ehmke, H. & Zeller, R. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17 ( 15 ), 4213 – 4225. | en_US |
dc.identifier.citedreference | Eswarakumar, V. P., Monsonego-Ornan, E., Pines, M., Antonopoulou, I., Morriss-Kay, G. M. & Lonai, P. 2002. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development. 129, 3783 – 3793. | en_US |
dc.identifier.citedreference | Eswarakumar, V. P., Lax, I. & Schlessinger, J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139 – 149. | en_US |
dc.identifier.citedreference | Evans, S. J., Choudary, P. V., Neal, C. R., Li, J. Z., Vawter, M. P., Tomita, H., Lopez, J. F., Thompson, R. C., Meng, F., Stead, J. D., Walsh, D. M., Myers, R. M., Bunney, W. E., Watson, S. J., Jones, E. G. & Akil, H. 2004. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl Acad. Sci. USA 101, 15506 – 15511. | en_US |
dc.identifier.citedreference | Flajolet, M., Wang, Z., Futter, M., Shen, W., Nuangchamnong, N., Bendor, J., Wallach, I., Nairn, A. C., Surmeier, D. J., Greengard, P. 2008. FGF acts as a co-transmitter through adenosine A 2A receptor to regulate synaptic plasticity. Nat. Neurosci. 11, 1402 – 1409. | en_US |
dc.identifier.citedreference | Fox, M. A., Sanes, J. R., Borza, D. B., Eswarakumar, V. P., Fassler, R., Hudson, B. G., John, S. W., Ninomiya, Y., Pedchenko, V., Pfaff, S. L., Rheault, M. N., Sado, Y., Segal, Y., Werle, M. J. & Umemori, H. 2007. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179 – 193. | en_US |
dc.identifier.citedreference | Fox, M. A. & Umemori, H. 2006. Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J. Neurochem. 97, 1215 – 1231. | en_US |
dc.identifier.citedreference | GarcÍa-Alonso, L., Romani, S. & JimÉnez, F. 2000. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron 28 ( 3 ), 741 – 752. | en_US |
dc.identifier.citedreference | Goda, Y. & Davis, G. W. 2003. Mechanisms of synapse assembly and disassembly. Neuron 40, 243 – 264. | en_US |
dc.identifier.citedreference | Hall, A. C., Lucas, F. R. & Salinas, P. C. 2000. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525 – 535. | en_US |
dc.identifier.citedreference | Hunter, D. D., Shah, V., Merlie, J. P. & Sanes, J. R. 1989. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229 – 234. | en_US |
dc.identifier.citedreference | Irving, C., Malhas, A., Guthrie, S. & Mason, I. 2002. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 129 ( 23 ), 5389 – 5398. | en_US |
dc.identifier.citedreference | Kiselyov, V. V., Skladchikova, G., Hinsby, A. M., Jensen, P. H., Kulahin, N., Soroka, V., Pedersen, N., Tsetlin, V., Poulsen, F. M., Berezin, V. & Bock, E. 2003. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11 ( 6 ), 691 – 701. | en_US |
dc.identifier.citedreference | Korada, S., Zheng, W., Basilico, C., Schwartz, M. L. & Vaccarino, F. M. 2002. Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. J. Neurosci. 22 ( 3 ), 863 – 875. | en_US |
dc.identifier.citedreference | Lee, H., Raiker, S. J., Venkatesh, K., Geary, R., Robak, L. A., Zhang, Y., Yeh, H. H., Shrager, P. & Giger, R. J. 2008. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci. 28 ( 11 ), 2753 – 2765. | en_US |
dc.identifier.citedreference | Li, A. J., Suzuki, S., Suzuki, M., Mizukoshi, E. & Imamura, T. 2002. Fibroblast growth factor-2 increases functional excitatory synapses on hippocampal neurons. Eur. J. Neurosci. 16 ( 7 ), 1313 – 1324. | en_US |
dc.identifier.citedreference | Mason, I. 2007. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583 – 596. | en_US |
dc.identifier.citedreference | McFarlane, S., Cornel, E., Amaya, E. & Holt, C. E. 1996. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17 ( 2 ), 245 – 254. | en_US |
dc.identifier.citedreference | McFarlane, S., McNeill, L. & Holt, C. E. 1995. FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15 ( 5 ), 1017 – 1028. | en_US |
dc.identifier.citedreference | Nakayama, Y., Miyake, A., Nakagawa, Y., Mido, T., Yoshikawa, M., Konishi, M. & Itoh, N. 2008. Fgf19 is required for zebrafish lens and retina development. Dev Biol. 313 ( 2 ), 752 – 766. | en_US |
dc.identifier.citedreference | Nishimune, H., Sanes, J. R. & Carlson, S. S. 2004. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature. 432, 580 – 587. | en_US |
dc.identifier.citedreference | Noakes, P. G., Gautam, M., Mudd, J., Sanes, J. R. & Merlie, J. P. 1995. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374, 258 – 262. | en_US |
dc.identifier.citedreference | Ornitz, D. M. & Itoh, N. 2001. Fibroblast growth factors. Genome. Biol. 2, 3005. 1 – 3005. 12. | en_US |
dc.identifier.citedreference | Ornitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G. & Goldfarb, M. 1996. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292 – 15297. | en_US |
dc.identifier.citedreference | Ortega, S., Ittmann, M., Tsang, S. H., Ehrlich, M. & Basilico, C. 1998. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl Acad. Sci. USA 95 ( 10 ), 5672 – 5677. | en_US |
dc.identifier.citedreference | Pun, S., Sigrist, M., Santos, A. F., Ruegg, M. A., Sanes, J. R., Jessell, T. M., Arber, S. & Caroni, P. 2002. An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles. Neuron 34, 357 – 370. | en_US |
dc.identifier.citedreference | Reuss, B. & von Bohlen und Halbach, O. 2003. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res. 313, 139 – 157. | en_US |
dc.identifier.citedreference | Saffell, J. L., Williams, E. J., Mason, I. J., Walsh, F. S. & Doherty, P. 1997. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231 – 242. | en_US |
dc.identifier.citedreference | Sanchez-Heras, E., Howell, F. V., Williams, G. & Doherty, P. 2006. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J. Biol. Chem. 281 ( 46 ), 35208 – 35216. | en_US |
dc.identifier.citedreference | Sanes, J. R. & Lichtman, J. W. 1999. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389 – 442. | en_US |
dc.identifier.citedreference | Sato, T., Joyner, A. L. & Nakamura, H. 2004. How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev. Growth Differ. 46 ( 6 ), 487 – 494. | en_US |
dc.identifier.citedreference | Scheiffele, P. 2003. Cell–cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485 – 508. | en_US |
dc.identifier.citedreference | Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. 2000. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657 – 669. | en_US |
dc.identifier.citedreference | Shanmugalingam, S., Houart, C., Picker, A., Reifers, F., Macdonald, R., Barth, A., Griffin, K., Brand, M. & Wilson, S. W. 2000. Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127 ( 12 ), 2549 – 2561. | en_US |
dc.identifier.citedreference | Shin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R. & Vaccarino, F. 2004. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J. Neurosci. 24 ( 9 ), 2247 – 2258. | en_US |
dc.identifier.citedreference | Shirasaki, R., Lewcock, J. W., Lettieri, K. & Pfaff, S. L. 2006. FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50 ( 6 ), 841 – 853. | en_US |
dc.identifier.citedreference | Smith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N. & Vaccarino, F. M. 2006. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci. 9 ( 6 ), 787 – 797. | en_US |
dc.identifier.citedreference | Takahashi, T., Nakajima, Y., Hirosawa, K., Nakajima, S. & Onodera, K. 1987. Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci. 7, 473 – 481. | en_US |
dc.identifier.citedreference | Thisse, B. & Thisse, C. 2005. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287, 390 – 402. | en_US |
dc.identifier.citedreference | Tole, S., Gutin, G., Bhatnagar, L., Remedios, R. & HÉbert, J. M. 2006. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol. 289 ( 1 ), 141 – 151. | en_US |
dc.identifier.citedreference | Umemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. 2004. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257 – 270. | en_US |
dc.identifier.citedreference | Vaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., Doetschman, T., Coffin, J. D., Wyland, J. J. & Hung, Y. T. 1999. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2 ( 3 ), 246 – 253. | en_US |
dc.identifier.citedreference | Waites, C. L., Craig, A. M. & Garner, C. C. 2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251 – 274. | en_US |
dc.identifier.citedreference | Walz, A., McFarlane, S., Brickman, Y. G., Nurcombe, V., Bartlett, P. F. & Holt, C. E. 1997. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development. 124 ( 12 ), 2421 – 2430. | en_US |
dc.identifier.citedreference | Webber, C. A., Chen, Y. Y., Hehr, C. L., Johnston, J. & McFarlane, S. 2005. Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol. Cell. Neurosci. 30 ( 1 ), 37 – 47. | en_US |
dc.identifier.citedreference | Webber, C. A., Hyakutake, M. T. & McFarlane, S. 2003. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev Biol. 263 ( 1 ), 24 – 34. | en_US |
dc.identifier.citedreference | West, D. C., Rees, C. G., Duchesne, L., Patey, S. J., Terry, C. J., Turnbull, J. E., Delehedde, M., Heegaard, C. W., Allain, F., Vanpouille, C., Ron, D. & Fernig, D. G. 2005. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J. Biol. Chem. 280, 13457 – 13464. | en_US |
dc.identifier.citedreference | Williams, E. J., Doherty, P., Turner, G., Reid, R. A., Hemperly, J. J. & Walsh, F. S. 1992. Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. Cell Biol. 119 ( 4 ), 883 – 892. | en_US |
dc.identifier.citedreference | Williams, E. J., Furness, J., Walsh, F. S. & Doherty, P. 1994. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13 ( 3 ), 583 – 594. | en_US |
dc.identifier.citedreference | Xiao, M., Xu, L., Laezza, F., Yamada, K., Feng, S. & Ornitz, D. M. 2007. Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Mol. Cell. Neurosci. 34 ( 3 ), 366 – 377. | en_US |
dc.identifier.citedreference | Xie, F. & Zheng, B. 2008. White matter inhibitors in CNS axon regeneration failure. Exp. Neurol. 209 ( 2 ), 302 – 312. | en_US |
dc.identifier.citedreference | Yamagata, M., Sanes, J. R. & Weiner, J. A. 2003. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621 – 632. | en_US |
dc.identifier.citedreference | Yokote, H., Fujita, K., Jing, X., Sawada, T., Liang, S., Yao, L., Yan, X., Zhang, Y., Schlessinger, J. & Sakaguchi, K. 2005. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc. Natl Acad. Sci. USA 102, 18866 – 18871. | en_US |
dc.identifier.citedreference | Yu, K., Xu, J., Liu, Z., Sosic, D., Shao, J., Olson, E. N., Towler, D. A. & Ornitz, D. M. 2003. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130, 3063 – 3074. | en_US |
dc.identifier.citedreference | Zhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M. & Ornitz, D. M. 2006. Receptor specificity of the fibroblast growth factor family, part II. J. Biol. Chem. 281 ( 23 ), 15694 – 15700. | en_US |
dc.identifier.citedreference | Zhou, M., Sutliff, R. L., Paul, R. J., Lorenz, J. N., Hoying, J. B., Haudenschild, C. C., Yin, M., Coffin, J. D., Kong, L., Kranias, E. G., Luo, W., Boivin, G. P., Duffy, J. J., Pawlowski, S. A. & Doetschman, T. 1998. Fibroblast growth factor 2 control of vascular tone. Nat. Med. 4 ( 2 ), 201 – 207. | en_US |
dc.identifier.citedreference | Ziv, N. E. & Garner, C. C. 2004. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385 – 399. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.