Show simple item record

Weaving the neuronal net with target-derived fibroblast growth factors

dc.contributor.authorUmemori, Hisashien_US
dc.date.accessioned2010-06-01T19:50:25Z
dc.date.available2010-06-01T19:50:25Z
dc.date.issued2009-04en_US
dc.identifier.citationUmemori, Hisashi (2009). "Weaving the neuronal net with target-derived fibroblast growth factors." Development, Growth & Differentiation 51(3 Phylogeny and Ontogeny of the Nervous System ): 263-270. <http://hdl.handle.net/2027.42/72972>en_US
dc.identifier.issn0012-1592en_US
dc.identifier.issn1440-169Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72972
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19210540&dopt=citationen_US
dc.format.extent897428 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Asiaen_US
dc.rightsJournal compilation © 2009 Japanese Society of Developmental Biologistsen_US
dc.subject.otherAxon Guidanceen_US
dc.subject.otherCell Adhesion Moleculesen_US
dc.subject.otherFibroblast Growth Factorsen_US
dc.subject.otherSynaptic Differentiationen_US
dc.subject.otherTarget Recognitionen_US
dc.titleWeaving the neuronal net with target-derived fibroblast growth factorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid19210540en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72972/1/j.1440-169X.2008.01079.x.pdf
dc.identifier.doi10.1111/j.1440-169X.2008.01079.xen_US
dc.identifier.sourceDevelopment, Growth & Differentiationen_US
dc.identifier.citedreferenceBeer, H. D., Florence, C., Dammeier, J., McGuire, L., Werner, S. & Duan, D. R. 1997. Mouse fibroblast growth factor 10: cDNA cloning, protein characterization, and regulation of mRNA expression. Oncogene 15, 2211 – 2218.en_US
dc.identifier.citedreferenceBenson, D. L., Colman, D. R. & Huntley, G. W. 2001. Molecules, maps and synapse specificity. Nat. Rev. Neurosci. 2, 899 – 909.en_US
dc.identifier.citedreferenceBieber, A. J., Snow, P. M., Hortsch, M., Patel, N. H., Jacobs, J. R., Traquina, Z. R., Schilling, J. & Goodman, C. S. 1989. Drosophila neuroglian: a member of the immunoglobulin superfamily with extensive homology to the vertebrate neural adhesion molecule L1. Cell 59 ( 3 ), 447 – 460.en_US
dc.identifier.citedreferenceBiederer, T., Sara, Y., Mozhayeva, M., Atasoy, D., Liu, X., Kavalali, E. T. & SÜdhof, T. C. 2002. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525 – 1531.en_US
dc.identifier.citedreferenceBuchanan, J., Sun, Y. A. & Poo, M. M. 1989. Studies of nerve-muscle interactions in Xenopus cell culture: fine structure of early functional contacts. J. Neurosci. 9, 1540 – 1554.en_US
dc.identifier.citedreferenceCambon, K., Hansen, S. M., Venero, C., Herrero, A. I., Skibo, G., Berezin, V., Bock, E. & Sandi, C. 2004. A synthetic neural cell adhesion molecule mimetic peptide promotes synaptogenesis, enhances presynaptic function, and facilitates memory consolidation. J. Neurosci. 24 ( 17 ), 4197 – 4204.en_US
dc.identifier.citedreferenceDai, Z. & Peng, H. B. 1995. Presynaptic differentiation induced in cultured neurons by local application of basic fibroblast growth factor. J. Neurosci. 15 ( 8 ), 5466 – 5475.en_US
dc.identifier.citedreferenceDono, R. 2003. Fibroblast growth factors as regulators of central nervous system development and function. Am. J. Physiol. Regul. Integr. Comp. Physiol. 284, R867 – R881.en_US
dc.identifier.citedreferenceDono, R., Texido, G., Dussel, R., Ehmke, H. & Zeller, R. 1998. Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J. 17 ( 15 ), 4213 – 4225.en_US
dc.identifier.citedreferenceEswarakumar, V. P., Monsonego-Ornan, E., Pines, M., Antonopoulou, I., Morriss-Kay, G. M. & Lonai, P. 2002. The IIIc alternative of Fgfr2 is a positive regulator of bone formation. Development. 129, 3783 – 3793.en_US
dc.identifier.citedreferenceEswarakumar, V. P., Lax, I. & Schlessinger, J. 2005. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 16, 139 – 149.en_US
dc.identifier.citedreferenceEvans, S. J., Choudary, P. V., Neal, C. R., Li, J. Z., Vawter, M. P., Tomita, H., Lopez, J. F., Thompson, R. C., Meng, F., Stead, J. D., Walsh, D. M., Myers, R. M., Bunney, W. E., Watson, S. J., Jones, E. G. & Akil, H. 2004. Dysregulation of the fibroblast growth factor system in major depression. Proc. Natl Acad. Sci. USA 101, 15506 – 15511.en_US
dc.identifier.citedreferenceFlajolet, M., Wang, Z., Futter, M., Shen, W., Nuangchamnong, N., Bendor, J., Wallach, I., Nairn, A. C., Surmeier, D. J., Greengard, P. 2008. FGF acts as a co-transmitter through adenosine A 2A receptor to regulate synaptic plasticity. Nat. Neurosci. 11, 1402 – 1409.en_US
dc.identifier.citedreferenceFox, M. A., Sanes, J. R., Borza, D. B., Eswarakumar, V. P., Fassler, R., Hudson, B. G., John, S. W., Ninomiya, Y., Pedchenko, V., Pfaff, S. L., Rheault, M. N., Sado, Y., Segal, Y., Werle, M. J. & Umemori, H. 2007. Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals. Cell 129, 179 – 193.en_US
dc.identifier.citedreferenceFox, M. A. & Umemori, H. 2006. Seeking long-term relationship: axon and target communicate to organize synaptic differentiation. J. Neurochem. 97, 1215 – 1231.en_US
dc.identifier.citedreferenceGarcÍa-Alonso, L., Romani, S. & JimÉnez, F. 2000. The EGF and FGF receptors mediate neuroglian function to control growth cone decisions during sensory axon guidance in Drosophila. Neuron 28 ( 3 ), 741 – 752.en_US
dc.identifier.citedreferenceGoda, Y. & Davis, G. W. 2003. Mechanisms of synapse assembly and disassembly. Neuron 40, 243 – 264.en_US
dc.identifier.citedreferenceHall, A. C., Lucas, F. R. & Salinas, P. C. 2000. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525 – 535.en_US
dc.identifier.citedreferenceHunter, D. D., Shah, V., Merlie, J. P. & Sanes, J. R. 1989. A laminin-like adhesive protein concentrated in the synaptic cleft of the neuromuscular junction. Nature 338, 229 – 234.en_US
dc.identifier.citedreferenceIrving, C., Malhas, A., Guthrie, S. & Mason, I. 2002. Establishing the trochlear motor axon trajectory: role of the isthmic organiser and Fgf8. Development 129 ( 23 ), 5389 – 5398.en_US
dc.identifier.citedreferenceKiselyov, V. V., Skladchikova, G., Hinsby, A. M., Jensen, P. H., Kulahin, N., Soroka, V., Pedersen, N., Tsetlin, V., Poulsen, F. M., Berezin, V. & Bock, E. 2003. Structural basis for a direct interaction between FGFR1 and NCAM and evidence for a regulatory role of ATP. Structure 11 ( 6 ), 691 – 701.en_US
dc.identifier.citedreferenceKorada, S., Zheng, W., Basilico, C., Schwartz, M. L. & Vaccarino, F. M. 2002. Fibroblast growth factor 2 is necessary for the growth of glutamate projection neurons in the anterior neocortex. J. Neurosci. 22 ( 3 ), 863 – 875.en_US
dc.identifier.citedreferenceLee, H., Raiker, S. J., Venkatesh, K., Geary, R., Robak, L. A., Zhang, Y., Yeh, H. H., Shrager, P. & Giger, R. J. 2008. Synaptic function for the Nogo-66 receptor NgR1: regulation of dendritic spine morphology and activity-dependent synaptic strength. J. Neurosci. 28 ( 11 ), 2753 – 2765.en_US
dc.identifier.citedreferenceLi, A. J., Suzuki, S., Suzuki, M., Mizukoshi, E. & Imamura, T. 2002. Fibroblast growth factor-2 increases functional excitatory synapses on hippocampal neurons. Eur. J. Neurosci. 16 ( 7 ), 1313 – 1324.en_US
dc.identifier.citedreferenceMason, I. 2007. Initiation to end point: the multiple roles of fibroblast growth factors in neural development. Nat. Rev. Neurosci. 8, 583 – 596.en_US
dc.identifier.citedreferenceMcFarlane, S., Cornel, E., Amaya, E. & Holt, C. E. 1996. Inhibition of FGF receptor activity in retinal ganglion cell axons causes errors in target recognition. Neuron 17 ( 2 ), 245 – 254.en_US
dc.identifier.citedreferenceMcFarlane, S., McNeill, L. & Holt, C. E. 1995. FGF signaling and target recognition in the developing Xenopus visual system. Neuron 15 ( 5 ), 1017 – 1028.en_US
dc.identifier.citedreferenceNakayama, Y., Miyake, A., Nakagawa, Y., Mido, T., Yoshikawa, M., Konishi, M. & Itoh, N. 2008. Fgf19 is required for zebrafish lens and retina development. Dev Biol. 313 ( 2 ), 752 – 766.en_US
dc.identifier.citedreferenceNishimune, H., Sanes, J. R. & Carlson, S. S. 2004. A synaptic laminin-calcium channel interaction organizes active zones in motor nerve terminals. Nature. 432, 580 – 587.en_US
dc.identifier.citedreferenceNoakes, P. G., Gautam, M., Mudd, J., Sanes, J. R. & Merlie, J. P. 1995. Aberrant differentiation of neuromuscular junctions in mice lacking s-laminin/laminin beta 2. Nature 374, 258 – 262.en_US
dc.identifier.citedreferenceOrnitz, D. M. & Itoh, N. 2001. Fibroblast growth factors. Genome. Biol. 2, 3005. 1 – 3005. 12.en_US
dc.identifier.citedreferenceOrnitz, D. M., Xu, J., Colvin, J. S., McEwen, D. G., MacArthur, C. A., Coulier, F., Gao, G. & Goldfarb, M. 1996. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271, 15292 – 15297.en_US
dc.identifier.citedreferenceOrtega, S., Ittmann, M., Tsang, S. H., Ehrlich, M. & Basilico, C. 1998. Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc. Natl Acad. Sci. USA 95 ( 10 ), 5672 – 5677.en_US
dc.identifier.citedreferencePun, S., Sigrist, M., Santos, A. F., Ruegg, M. A., Sanes, J. R., Jessell, T. M., Arber, S. & Caroni, P. 2002. An intrinsic distinction in neuromuscular junction assembly and maintenance in different skeletal muscles. Neuron 34, 357 – 370.en_US
dc.identifier.citedreferenceReuss, B. & von Bohlen und Halbach, O. 2003. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res. 313, 139 – 157.en_US
dc.identifier.citedreferenceSaffell, J. L., Williams, E. J., Mason, I. J., Walsh, F. S. & Doherty, P. 1997. Expression of a dominant negative FGF receptor inhibits axonal growth and FGF receptor phosphorylation stimulated by CAMs. Neuron 18, 231 – 242.en_US
dc.identifier.citedreferenceSanchez-Heras, E., Howell, F. V., Williams, G. & Doherty, P. 2006. The fibroblast growth factor receptor acid box is essential for interactions with N-cadherin and all of the major isoforms of neural cell adhesion molecule. J. Biol. Chem. 281 ( 46 ), 35208 – 35216.en_US
dc.identifier.citedreferenceSanes, J. R. & Lichtman, J. W. 1999. Development of the vertebrate neuromuscular junction. Annu. Rev. Neurosci. 22, 389 – 442.en_US
dc.identifier.citedreferenceSato, T., Joyner, A. L. & Nakamura, H. 2004. How does Fgf signaling from the isthmic organizer induce midbrain and cerebellum development? Dev. Growth Differ. 46 ( 6 ), 487 – 494.en_US
dc.identifier.citedreferenceScheiffele, P. 2003. Cell–cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485 – 508.en_US
dc.identifier.citedreferenceScheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. 2000. Neuroligin expressed in nonneuronal cells triggers presynaptic development in contacting axons. Cell 101, 657 – 669.en_US
dc.identifier.citedreferenceShanmugalingam, S., Houart, C., Picker, A., Reifers, F., Macdonald, R., Barth, A., Griffin, K., Brand, M. & Wilson, S. W. 2000. Ace/Fgf8 is required for forebrain commissure formation and patterning of the telencephalon. Development 127 ( 12 ), 2549 – 2561.en_US
dc.identifier.citedreferenceShin, D. M., Korada, S., Raballo, R., Shashikant, C. S., Simeone, A., Taylor, J. R. & Vaccarino, F. 2004. Loss of glutamatergic pyramidal neurons in frontal and temporal cortex resulting from attenuation of FGFR1 signaling is associated with spontaneous hyperactivity in mice. J. Neurosci. 24 ( 9 ), 2247 – 2258.en_US
dc.identifier.citedreferenceShirasaki, R., Lewcock, J. W., Lettieri, K. & Pfaff, S. L. 2006. FGF as a target-derived chemoattractant for developing motor axons genetically programmed by the LIM code. Neuron 50 ( 6 ), 841 – 853.en_US
dc.identifier.citedreferenceSmith, K. M., Ohkubo, Y., Maragnoli, M. E., Rasin, M. R., Schwartz, M. L., Sestan, N. & Vaccarino, F. M. 2006. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nat. Neurosci. 9 ( 6 ), 787 – 797.en_US
dc.identifier.citedreferenceTakahashi, T., Nakajima, Y., Hirosawa, K., Nakajima, S. & Onodera, K. 1987. Structure and physiology of developing neuromuscular synapses in culture. J. Neurosci. 7, 473 – 481.en_US
dc.identifier.citedreferenceThisse, B. & Thisse, C. 2005. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev Biol. 287, 390 – 402.en_US
dc.identifier.citedreferenceTole, S., Gutin, G., Bhatnagar, L., Remedios, R. & HÉbert, J. M. 2006. Development of midline cell types and commissural axon tracts requires Fgfr1 in the cerebrum. Dev Biol. 289 ( 1 ), 141 – 151.en_US
dc.identifier.citedreferenceUmemori, H., Linhoff, M. W., Ornitz, D. M. & Sanes, J. R. 2004. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257 – 270.en_US
dc.identifier.citedreferenceVaccarino, F. M., Schwartz, M. L., Raballo, R., Nilsen, J., Rhee, J., Zhou, M., Doetschman, T., Coffin, J. D., Wyland, J. J. & Hung, Y. T. 1999. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nat. Neurosci. 2 ( 3 ), 246 – 253.en_US
dc.identifier.citedreferenceWaites, C. L., Craig, A. M. & Garner, C. C. 2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251 – 274.en_US
dc.identifier.citedreferenceWalz, A., McFarlane, S., Brickman, Y. G., Nurcombe, V., Bartlett, P. F. & Holt, C. E. 1997. Essential role of heparan sulfates in axon navigation and targeting in the developing visual system. Development. 124 ( 12 ), 2421 – 2430.en_US
dc.identifier.citedreferenceWebber, C. A., Chen, Y. Y., Hehr, C. L., Johnston, J. & McFarlane, S. 2005. Multiple signaling pathways regulate FGF-2-induced retinal ganglion cell neurite extension and growth cone guidance. Mol. Cell. Neurosci. 30 ( 1 ), 37 – 47.en_US
dc.identifier.citedreferenceWebber, C. A., Hyakutake, M. T. & McFarlane, S. 2003. Fibroblast growth factors redirect retinal axons in vitro and in vivo. Dev Biol. 263 ( 1 ), 24 – 34.en_US
dc.identifier.citedreferenceWest, D. C., Rees, C. G., Duchesne, L., Patey, S. J., Terry, C. J., Turnbull, J. E., Delehedde, M., Heegaard, C. W., Allain, F., Vanpouille, C., Ron, D. & Fernig, D. G. 2005. Interactions of multiple heparin binding growth factors with neuropilin-1 and potentiation of the activity of fibroblast growth factor-2. J. Biol. Chem. 280, 13457 – 13464.en_US
dc.identifier.citedreferenceWilliams, E. J., Doherty, P., Turner, G., Reid, R. A., Hemperly, J. J. & Walsh, F. S. 1992. Calcium influx into neurons can solely account for cell contact-dependent neurite outgrowth stimulated by transfected L1. J. Cell Biol. 119 ( 4 ), 883 – 892.en_US
dc.identifier.citedreferenceWilliams, E. J., Furness, J., Walsh, F. S. & Doherty, P. 1994. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, N-CAM, and N-cadherin. Neuron 13 ( 3 ), 583 – 594.en_US
dc.identifier.citedreferenceXiao, M., Xu, L., Laezza, F., Yamada, K., Feng, S. & Ornitz, D. M. 2007. Impaired hippocampal synaptic transmission and plasticity in mice lacking fibroblast growth factor 14. Mol. Cell. Neurosci. 34 ( 3 ), 366 – 377.en_US
dc.identifier.citedreferenceXie, F. & Zheng, B. 2008. White matter inhibitors in CNS axon regeneration failure. Exp. Neurol. 209 ( 2 ), 302 – 312.en_US
dc.identifier.citedreferenceYamagata, M., Sanes, J. R. & Weiner, J. A. 2003. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621 – 632.en_US
dc.identifier.citedreferenceYokote, H., Fujita, K., Jing, X., Sawada, T., Liang, S., Yao, L., Yan, X., Zhang, Y., Schlessinger, J. & Sakaguchi, K. 2005. Trans-activation of EphA4 and FGF receptors mediated by direct interactions between their cytoplasmic domains. Proc. Natl Acad. Sci. USA 102, 18866 – 18871.en_US
dc.identifier.citedreferenceYu, K., Xu, J., Liu, Z., Sosic, D., Shao, J., Olson, E. N., Towler, D. A. & Ornitz, D. M. 2003. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 130, 3063 – 3074.en_US
dc.identifier.citedreferenceZhang, X., Ibrahimi, O. A., Olsen, S. K., Umemori, H., Mohammadi, M. & Ornitz, D. M. 2006. Receptor specificity of the fibroblast growth factor family, part II. J. Biol. Chem. 281 ( 23 ), 15694 – 15700.en_US
dc.identifier.citedreferenceZhou, M., Sutliff, R. L., Paul, R. J., Lorenz, J. N., Hoying, J. B., Haudenschild, C. C., Yin, M., Coffin, J. D., Kong, L., Kranias, E. G., Luo, W., Boivin, G. P., Duffy, J. J., Pawlowski, S. A. & Doetschman, T. 1998. Fibroblast growth factor 2 control of vascular tone. Nat. Med. 4 ( 2 ), 201 – 207.en_US
dc.identifier.citedreferenceZiv, N. E. & Garner, C. C. 2004. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385 – 399.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.