Show simple item record

Source process and tectonic implications of the great 1975 North Atlantic earthquake

dc.contributor.authorLynnes, Christopher S.en_US
dc.contributor.authorRuff, Larry J.en_US
dc.date.accessioned2010-06-01T19:51:52Z
dc.date.available2010-06-01T19:51:52Z
dc.date.issued1985-09en_US
dc.identifier.citationLynnes, Christopher S.; Ruff, Larry J. (1985). "Source process and tectonic implications of the great 1975 North Atlantic earthquake." Geophysical Journal of the Royal Astronomical Society 82(3): 497-510. <http://hdl.handle.net/2027.42/72996>en_US
dc.identifier.issn0016-8009en_US
dc.identifier.issn1365-246Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/72996
dc.description.abstractThe Atlantic segment of the Africa–Europe plate boundary has usually been interpreted as a transform boundary on the basis of the bathymetric expression of the Gloria fault and dextral strike-slip first-motion mechanisms aligned along the Azores–Gibraltar line of seismicity. The 1975 May 26 earthquake ( M s =7.9) was assumed to fit into this framework because it occurred in the general area of this line and has a similar first-motion focal mechanism (strike=288°, dip=72°, slip angle=184°). However, several anomalies cast doubt on this picture: the event is abnormally large for an oceanic transform event; a sizeable tsunami was excited; the aftershock area is unusually small for such a large event; and most significantly, the epicentre is 200 km south of the presumed plate boundary. The Rayleigh wave radiation pattern indicates a change in focal mechanism to one with a significant dip-slip component. The short duration of the source time history (20 s, as deconvolved from long-period P -waves), the lack of directivity in the Rayleigh waves, and the small one-day aftershock area suggest a fault length less than 80 km. One nodal plane of the earthquake is approximately aligned with the trace of an ancient fracture zone. We have compared the Pasadena 1-90 record of the 1975 earthquake to that of the 1941 North Atlantic strike-slip earthquake (200 km to the NNW) and confirmed the large size of the 1941 event ( M =8.2). The non-colinear relationship of the 1975 and 1941 events suggests that there is no well-defined plate boundary between the Azores and Gibraltar. This interpretation is supported by the intraplate nature of both the 1975 event and the large 1969 thrust event 650 km to the east. This study also implies that the largest oceanic strike-slip earthquakes occur in old lithosphere in a transitional tectonic regime.en_US
dc.format.extent784482 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1985 Royal Astronomical Societyen_US
dc.titleSource process and tectonic implications of the great 1975 North Atlantic earthquakeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/72996/1/j.1365-246X.1985.tb05148.x.pdf
dc.identifier.doi10.1111/j.1365-246X.1985.tb05148.xen_US
dc.identifier.sourceGeophysical Journal of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceAbe, K., 1972. Mechanisms and tectonic implications of the 1966 and 1970 Peru earthquakes, Phys. Earth planet. Int., 5, 367 – 379.en_US
dc.identifier.citedreferenceBen-Menahem, A., 1977. Renormalization of the magnitude scale, Phys. Earth planet. Int., 15, 315 – 340.en_US
dc.identifier.citedreferenceComer, R. P., 1984a. The tsunami mode of a flat earth and its excitation by earthquake sources, Geophys. J. R. astr. Soc., 77, 1 – 27.en_US
dc.identifier.citedreferenceComer, R. P., 1984b. Tsunami generation: a comparison of traditional and normal mode approaches, Geophys. J. R. astr. Soc., 77, 29 – 41.en_US
dc.identifier.citedreferenceDi Filippo, D., 1949. Il terremoto delle Azzore del 25 Nov. 1941, Annali Geofis., 2, 400 – 405.en_US
dc.identifier.citedreferenceDziewonski, A. M. & Woodhouse, J. H., 1983. An experiment in systematic study of global seismicity: centroid-moment tensor solutions for 201 moderate and large earthquakes of 1981, J. geophys. Res., 88, 3247 – 3271.en_US
dc.identifier.citedreferenceFukao, Y., 1973. Thrust faulting at a lithospheric plate boundary, the Portugal earthquake of 1969, Earth planet. Sci. Lett., 18, 205 – 216.en_US
dc.identifier.citedreferenceGutenberg, B. & Richter, C. F., 1949. Seismicity of the Earth, Princeton University Press.en_US
dc.identifier.citedreferenceHadley, D. M. & Kanamori, H., 1975. Seismotectonics of the eastern Azores-Gibraltar ridge (abstract), Eos, 56, 1028.en_US
dc.identifier.citedreferenceHirn, A., Haessler, H., Hoang Trong, P., Wittlinger, G. & Mendes Victor, L., 1980. Aftershock sequence of the January 1st, 1980 earthquake and present-day tectonics in the Azores, Geophys. Res. Lett., 7, 501 – 504.en_US
dc.identifier.citedreferenceIsacks, B., Oliver, J. & Sykes, L. R., 1968. Seismology and the new global tectonics, J. geophys. Res., 73, 5855 – 5899.en_US
dc.identifier.citedreferenceKanamori, H., 1970. Synthesis of long-period surface waves and its application to earthquake source studies – Kurile Islands earthquake of October 13, 1963, J. geophys. Res., 75, 5011 – 5027.en_US
dc.identifier.citedreferenceKanamori, H. & Anderson, D. L., 1975. Theoretical basis of some empirical relations in seismology, Bull. seism. Soc. Am., 65, 1073 – 1095.en_US
dc.identifier.citedreferenceKanamori, H. & Stewart, G. S., 1978. Seismological aspects of the Guatemala earthquake of February 4, 1976, J. geophys. Res., 83, 3427 – 3434.en_US
dc.identifier.citedreferenceLaughton, A. S. & Whitmarsh, R. B., 1974. The Azores–Gibraltar plate boundary, in Geodynamics of Iceland and the North Atlantic Area, pp. 63 – 81, ed. Kristjansson, L., Reidel, Dordrecht.en_US
dc.identifier.citedreferenceLay, T. & Kanamori, H., 1985. Geometric effects of global lateral heterogeneity on long-period surface wave propagation, J. geophys. Res., 90, 605 – 621.en_US
dc.identifier.citedreferenceMcKenzie, D., 1972. Active tectonics of the Mediterranean region, Geophys. J. R. astr. Soc., 30, 109 – 185.en_US
dc.identifier.citedreferenceMendiguren, J., 1977. Inversion of surface wave data in source mechanism studies, J. geophys. Res., 82, 889 – 894.en_US
dc.identifier.citedreferenceMinster, J. B. & Jordan, T. H., 1978. Present-day plate motions, J. geophys. Res., 83, 5331 – 5354.en_US
dc.identifier.citedreferenceMoreira, V. S., 1979. Report of activities in Europe during the period 1975–1979, presented to the IUGG Tsunami Committee, Canberra.en_US
dc.identifier.citedreferenceNakanishi, I. & Anderson, D. L., 1984. Measurements of mantle wave velocities and inversion for lateral heterogeneity and anisotropy – II. Analysis by the single station method, Geophys. J. R. astr. Soc., 78, 573 – 617.en_US
dc.identifier.citedreferenceOkal, E. A. & Stewart, L. M., 1982. Slow earthquakes along oceanic fracture zones: evidence for asthenospheric flow away from hotspots ?, Earth planet. Sci. Lett., 57, 75 – 87.en_US
dc.identifier.citedreferenceRona, P. A., 1980. The central north Atlantic ocean basin and continental margins: geology, geophysics, geochemistry, and resources, including the trans-Atlantic geotraverse (TAG), NOAA atlas 3.en_US
dc.identifier.citedreferenceRuff, L. J., 1983. Fault asperities inferred from seismic body waves, in Earthquakes: Observation, Theory and Interpretation, pp. 251 – 276, eds Kanamori, H. & Boschi, E., Elsevier-North Holland, New York.en_US
dc.identifier.citedreferenceRuff, L. J., 1984. Tomographic imaging of the earthquake rupture process, Geophys. Res. Lett., 11, 629 – 632.en_US
dc.identifier.citedreferenceRuff, L. J. & Cazenave, A., 1985. SEASAT geoid anomalies and the Macquarie Ridge complex, Phys. Earth planet. Int., 38, 59 – 69.en_US
dc.identifier.citedreferenceRuff, L. J., Given, J. & Sanders, C., 1982. The tectonics of the Macquarie Ridge, New Zealand: new evidence of strike-slip motion from the earthquake of May 25, 1981, M w =7.7 (abstract), Eos, 63, 384.en_US
dc.identifier.citedreferenceRuff, L. J. & Kanamori, H., 1983. The rupture process and asperity distribution of three great earthquakes from long-period diffracted P -waves, Phys. Earth planet. Int., 31, 202 – 230.en_US
dc.identifier.citedreferenceSchwartz, S. Y. & Lay, T., 1984. Comparison of surface wave amplitude and phase anomalies for two models of global lateral heterogeneity (abstract), Eos, 65, 1003.en_US
dc.identifier.citedreferenceSieh, K. E., 1978. Slip along the San Andreas fault associated with the great 1857 earthquake, Bull. seism. Soc. Am., 68, 1421 – 1448.en_US
dc.identifier.citedreferenceUdias, A., 1980. Seismic stresses in the region Azores-Spain-Western Mediterranean, Suppl. Rock Mech., 9, 75 – 84.en_US
dc.identifier.citedreferenceUdias, A., Lopez-Arroyo, A. & Mezcua, J., 1976. Seismotectonics of the Azores-Alboran region, Tectonophys., 31, 259 – 289.en_US
dc.identifier.citedreferenceWard, S. N., 1980. Relationships of tsunami generation and an earthquake source, J. Phys. Earth, 28, 441 – 474.en_US
dc.identifier.citedreferenceWard, S. N., 1982. On tsunami nucleation II. An instantaneous modulated line source, Phys. Earth planet. Int., 27, 273 – 285.en_US
dc.identifier.citedreferenceWiens, D. A. & Stein, S., 1983. Age dependence of intraplate seismicity and implications for lithospheric evolution, J. geophys. Res., 88, 6455 – 6468.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.