Show simple item record

Nociceptin/Orphanin FQ Content is Decreased in Forebrain Neurones During Acute Stress

dc.contributor.authorDevine, D. P.en_US
dc.contributor.authorHoversten, Mary T.en_US
dc.contributor.authorUeda, Yasukoen_US
dc.contributor.authorAkil, Hudaen_US
dc.date.accessioned2010-06-01T19:55:07Z
dc.date.available2010-06-01T19:55:07Z
dc.date.issued2003-01en_US
dc.identifier.citationDevine, D. P.; Hoversten, M. T.; Ueda, Y.; Akil, H. (2003). "Nociceptin/Orphanin FQ Content is Decreased in Forebrain Neurones During Acute Stress." Journal of Neuroendocrinology 15(1): 69-74. <http://hdl.handle.net/2027.42/73048>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73048
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12535171&dopt=citationen_US
dc.description.abstractWe examined the effects of acute and chronic stress on neurotransmission of nociceptin/orphanin FQ (N/OFQ) in a variety of brain regions. Four groups of rats were exposed to chronic variable stress, and/or a single acute stress before decapitation. Group 1 served as unstressed controls. The rats in group 2 (chronic stress/no acute stress) were exposed to a 10-day regimen of chronic stress (two unpredictable stressors per day). These rats were decapitated 20 h after the last stressor. The rats in group 3 (no chronic stress/acute stress) were not exposed to chronic stress, but they were restrained for 30 min prior to decapitation. The rats in group 4 (chronic stress/acute stress) were chronically stressed for 10 days, and were then restrained prior to decapitation. Trunk blood was collected, and plasma adrenocorticotrophic hormone (ACTH) and corticosterone (CORT) were assayed by radioimmunoassay (RIA). The rats' brains were dissected, and N/OFQ content was measured by RIA in a variety of brain regions, and in spinal cord. Chronic stress exposure altered the hormonal responses to the acute stress exposure. In the rats that were exposed to chronic stress without acute stress (group 2), N/OFQ content did not differ from the content of the unstressed controls in any of the dissected brain regions. In the two groups that were stressed acutely just before decapitation (groups 3 and 4), N/OFQ content was decreased by 25–30% in the basal forebrain. Accordingly, the neuronal content of N/OFQ is decreased in basal forebrain neurones during acute stress exposure. In light of our previous finding that N/OFQ administration increases circulating ACTH and CORT concentrations, and augments hormonal responses to an acute stressor, the current finding raises the possibility that endogenous N/OFQ participates in neuronal regulation of hormonal responses to acute stress exposure.en_US
dc.format.extent139324 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© 2003 Blackwell Publishing Ltden_US
dc.subject.otherStressen_US
dc.subject.otherHPA Axisen_US
dc.subject.otherACTHen_US
dc.subject.otherCorticosteroneen_US
dc.subject.otherOpioiden_US
dc.titleNociceptin/Orphanin FQ Content is Decreased in Forebrain Neurones During Acute Stressen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationotherDepartment of Psychology, University of Florida, Gainesville, FL, USA.en_US
dc.identifier.pmid12535171en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73048/1/j.1365-2826.2003.00868.x.pdf
dc.identifier.doi10.1046/j.1365-2826.2003.00868.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceReinscheid RK, Nothacker H-P, Bourson A, Ardati A, Henningsen RA, Bunzow JR, Grandy DK, Langen H, Monsma FJ Jr, Civelli O, Orphanin FQ. A neuropeptide that activates an opioid-like G-protein-coupled receptor. Science 1995; 270: 792 – 794.en_US
dc.identifier.citedreferenceMeunier JC, Mollereau C, Toll L, Suaudeau C, Moisand C, Alvinerie P, Butour J-C, Guillemot J-C, Ferrara P, Monsarrat B, Mazargull H, Vassart G, Parmentier M, Costentin J. Isolation and structure of the endogenous agonist of opioid receptor-like ORL 1 receptor. Nature 1995; 377: 532 – 535.en_US
dc.identifier.citedreferenceBunzow JR, Saez C, Mortrud M, Bouvier C, Williams JT, Low M, Grandy DK. Molecular cloning and tissue distribution of a putative member of the rat opioid receptor gene family that is not a µ, δ or κ opioid receptor type. FEBS Lett 1994; 347: 284 – 288.en_US
dc.identifier.citedreferenceMollereau C, Parmentier M, Mailleux P, Butour J-L, Moisand C, Chalon P, Caput D, Vassart G, Meunier JC. ORL1, a novel member of the opioid receptor family − cloning, functional expression and localization. FEBS Lett 1994; 341: 33 – 38.en_US
dc.identifier.citedreferenceVaughan CW, Christie MJ. Increase by the ORL1 receptor (opioid receptor-like1) ligand, nociceptin, of inwardly rectifying K conductance in dorsal raphe nucleus neurones. Br J Pharmacol 1996; 117: 1609 – 1611.en_US
dc.identifier.citedreferenceConnor M, Yeo A, Henderson G. The effect of nociceptin on Ca 2+ channel current and intracellular Ca 2+ in the SH-SY5Y human neuroblastoma cell line. Br J Pharmacol 1996; 118: 205 – 207.en_US
dc.identifier.citedreferenceConnor M, Vaughan CW, Chieng B, Christie MJ. Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurones in vitro. Br J Pharmacol 1996; 119: 1614 – 1618.en_US
dc.identifier.citedreferenceFukuda K, Kato S, Mori K, Nishi M, Takeshima H, Iwabe N, Miyata T, Houtani T, Sugimoto T. cDNA cloning and regional distribution of a novel member of the opioid receptor family. FEBS Lett 1994; 343: 42 – 46.en_US
dc.identifier.citedreferenceChen Y, Fan Y, Liu J, Mestek A, Tian M, Kozak CA, Yu L. Molecular cloning, tissue distribution and chromosomal localization of a novel member of the opioid receptor gene family. FEBS Lett 1994; 347: 279 – 283.en_US
dc.identifier.citedreferenceLachowicz JE, Shen Y, Monsma FJ Jr, Sibley DR. Molecular cloning of a novel G protein-coupled receptor related to the opiate receptor family. J Neurochem 1995; 64: 34 – 40.en_US
dc.identifier.citedreferenceAnton B, Fein J, To T, Li X, Silberstein L, Evans CJ. Immunohistochemical localization of ORL-1 in the central nervous system of the rat. J Comp Neurol 1996; 368: 229 – 251.en_US
dc.identifier.citedreferenceNeal CR Jr, Mansour A, Reinscheid RK, Nothacker HP, Civelli O, Akil H, Watson SJ Jr. Opioid receptor-like (ORL1) receptor distribution in the rat central nervous system: comparison of ORL1 receptor mRNA expression with ( 125 )I-[ ( 14 )Tyr]-orphanin FQ binding. J Comp Neurol 1999; 412: 563 – 605.en_US
dc.identifier.citedreferenceNeal CR Jr, Mansour A, Reinscheid RK, Nothacker HP, Civelli O, Watson SJ Jr. Localization of orphanin FQ (nociceptin) peptide and messenger RNA in the central nervous system of the rat. J Comp Neurol 1999; 406: 503 – 547.en_US
dc.identifier.citedreferenceWick MJ, Minnerath SR, Lin X, Elde R, Law P-Y, Loh HH. Isolation of a novel cDNA encoding a putative membrane receptor with high homology to the cloned µ, δ, and κ opioid receptors. Mol Brain Res 1994; 27: 37 – 44.en_US
dc.identifier.citedreferenceFlorin S, Leroux-Nicollet I, Meunier JC, Costentin J. Autoradiographic localization of [ 3 H]nociceptin binding sites from telencephalic to mesencephalic regions of the mouse brain. Neurosci Lett 1997; 230: 33 – 36.en_US
dc.identifier.citedreferenceFoddi MC, Mennini T. [ 125 I][Tyr 14 ]orphanin binding to rat brain: evidence for labelling the opioid-receptor-like 1 (ORL1). Neurosci Lett 1997; 230: 105 – 108.en_US
dc.identifier.citedreferenceShimohira I, Tokuyama S, Himeno A, Niwa M, Ueda H. Characterization of nociceptin-stimulated in situ [ 35 S]GTPγS binding in comparison with opioid agonist-stimulated ones in brain regions of the mice. Neurosci Lett 1997; 237: 113 – 116.en_US
dc.identifier.citedreferenceSim LJ, Childers SR. Anatomical distribution of mu, delta, and kappa opioid- and nociceptin/orphanin FQ-stimulated [ 35 S]guanylyl-5′-O- ( γ -thio)-triphosphate binding in guinea pig brain. J Comp Neurol 1997; 386: 562 – 572.en_US
dc.identifier.citedreferenceSim LJ, Xiao RY, Childers SR. Identification of opioid receptor-like (ORL1) peptide-stimulated [ 35 S]GTPγS binding in rat brain. Neuroreport 1996; 7: 729 – 733.en_US
dc.identifier.citedreferenceDevine DP, Watson SJ, Akil H. Orphanin FQ regulates neuroendocrine function of the limbic-hypothalamic-pituitary-adrenal axis. Neuroscience 2001; 102: 541 – 553.en_US
dc.identifier.citedreferenceKwak SP, Morano MI, Young EA, Watson SJ, Akil H. Diurnal CRH mRNA rhythm in the hypothalamus: decreased expression in the evening is not dependent on endogenous glucocorticoids. Neuroendocrinology 1993; 57: 96 – 105.en_US
dc.identifier.citedreferenceGlowinski J, Iversen LL. Regional studies of catecholamines in the rat brain. I. The disposition of [ 3 H]norepinephrine, [ 3 H]dopamine and [ 3 H]dopa in various regions of the brain. J Neurochem 1966; 13: 655 – 669.en_US
dc.identifier.citedreferenceHelmreich DL, Morano MI, Akil H, Watson SJ. Correlation between changes in stress-induced corticosterone secretion and GR mRNA levels. Stress 1997; 2: 101 – 112.en_US
dc.identifier.citedreferenceTache YRP, Ducharme JR, Collu R. Pattern of adenohypophyseal hormone changes in male rats following chronic stress. Neuroendocrinology 1978; 26: 208 – 219.en_US
dc.identifier.citedreferenceBassett JR, Cairncross KD. Morphological changes induced in rats following prolonged exposure to stress. Pharmacol Biochem Behav 1975; 3: 411 – 420.en_US
dc.identifier.citedreferenceMisilmeri MA, Devine DP. Neuroanatomical sites mediating orphanin FQ-induced modulation of LHPA axis activity. Soc Neurosci Abstract 2000; 26: 435.2.en_US
dc.identifier.citedreferenceKoster A, Montkowski A, Schulz S, Stube EM, Knaudt K, Jenck F, Moreau JL, Nothacker HP, Civelli O, Reinscheid RK. Targeted disruption of the orphanin FQ/nociceptin gene increases stress susceptibility and impairs stress adaptation in mice. Proc Natl Acad Sci USA 1999; 96: 10444 – 10449.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.