Show simple item record

Forest fine-root production and nitrogen use under elevated CO 2 : contrasting responses in evergreen and deciduous trees explained by a common principle

dc.contributor.authorFranklin, Oskaren_US
dc.contributor.authorMcMurtrie, Ross E.en_US
dc.contributor.authorIversen, Colleen M.en_US
dc.contributor.authorCrous, Kristine Y.en_US
dc.contributor.authorFinzi, Adrien C.en_US
dc.contributor.authorTissue, David T.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.contributor.authorOren, Ramen_US
dc.contributor.authorNorby, Richard J.en_US
dc.date.accessioned2010-06-01T19:55:22Z
dc.date.available2010-06-01T19:55:22Z
dc.date.issued2009-01en_US
dc.identifier.citationFRANKLIN, OSKAR; McMURTRIE, ROSS E.; IVERSEN, COLLEEN M.; CROUS, KRISTINE Y.; FINZI, ADRIEN C.; TISSUE, DAVID T.; ELLSWORTH, DAVID S.; OREN, RAM; NORBY, RICHARD J. (2009). "Forest fine-root production and nitrogen use under elevated CO 2 : contrasting responses in evergreen and deciduous trees explained by a common principle." Global Change Biology 15(1): 132-144. <http://hdl.handle.net/2027.42/73052>en_US
dc.identifier.issn1354-1013en_US
dc.identifier.issn1365-2486en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73052
dc.description.abstractDespite the importance of nitrogen (N) limitation of forest carbon (C) sequestration at rising atmospheric CO 2 concentration, the mechanisms responsible are not well understood. To elucidate the interactive effects of elevated CO 2 (eCO 2 ) and soil N availability on forest productivity and C allocation, we hypothesized that (1) trees maximize fitness by allocating N and C to maximize their net growth and (2) that N uptake is controlled by soil N availability and root exploration for soil N. We tested this model using data collected in Free-Air CO 2 Enrichment sites dominated by evergreen ( Pinus taeda ; Duke Forest) and deciduous [ Liquidambar styraciflua ; Oak Ridge National Laboratory (ORNL)] trees. The model explained 80–95% of variation in productivity and N-uptake data among eCO 2 , N fertilization and control treatments over 6 years. The model explains why fine-root production increased, and why N uptake increased despite reduced soil N availability under eCO 2 at ORNL and Duke. In agreement with observations at other sites, the model predicts that soil N availability reduced below a critical level diminishes all eCO 2 responses. At Duke, a negative feedback between reduced soil N availability and N uptake prevented progressive reduction in soil N availability at eCO 2 . At ORNL, soil N availability progressively decreased because it did not trigger reductions in N uptake; N uptake was maintained at ORNL through a large increase in the production of fast turnover fine roots. This implies that species with fast root turnover could be more prone to progressive N limitation of carbon sequestration in woody biomass than species with slow root turnover, such as evergreens. However, longer term data are necessary for a thorough evaluation of this hypothesis. The success of the model suggests that the principle of maximization of net growth to control growth and allocation could serve as a basis for simplification and generalization of larger scale forest and ecosystem models, for example by removing the need to specify parameters for relative foliage/stem/root allocation.en_US
dc.format.extent228280 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishingen_US
dc.subject.otherAllocationen_US
dc.subject.otherElevated Carbon Dioxideen_US
dc.subject.otherFACE Experimentsen_US
dc.subject.otherFine-root Longevityen_US
dc.subject.otherForest Growth Modelen_US
dc.subject.otherOptimizationen_US
dc.subject.otherPlant Theoryen_US
dc.subject.otherSoil N Availabilityen_US
dc.subject.otherSoil N Uptakeen_US
dc.titleForest fine-root production and nitrogen use under elevated CO 2 : contrasting responses in evergreen and deciduous trees explained by a common principleen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum¶ School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109-1115, USA ,en_US
dc.contributor.affiliationotherSchool of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia ,en_US
dc.contributor.affiliationother† International Institute for Applied Systems Analysis (IIASA), A-2361 Laxenburg, Austria ,en_US
dc.contributor.affiliationother† Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996, USA ,en_US
dc.contributor.affiliationother§ Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6422, USA ,en_US
dc.contributor.affiliationother∥ Department of Biology, Boston University, Boston, MA 02215, USA ,en_US
dc.contributor.affiliationotherDepartment of Biological Sciences, Texas Tech University, Flint and Main Street Lubbock, TX 79409-3131, USA ,en_US
dc.contributor.affiliationother†† Centre for Plant and Food Science, University of Western Sydney, Penrith South DC, NSW 1797, Australia ,en_US
dc.contributor.affiliationother†† Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708-0328, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73052/1/j.1365-2486.2008.01710.x.pdf
dc.identifier.doi10.1111/j.1365-2486.2008.01710.xen_US
dc.identifier.sourceGlobal Change Biologyen_US
dc.identifier.citedreferenceAndrews JA, Harrison KG, Matamala R, Schlesinger WH ( 1999 ) Separation of root respiration using carbon-13 labeling during free-air carbon enrichment (FACE). Soil Science Society of America Journal, 63, 1429 – 1435.en_US
dc.identifier.citedreferenceBinkley D, Stape JL, Ryan MG ( 2004 ) Thinking about efficiency of resource use in forests. Forest Ecology and Management, 193, 5 – 16.en_US
dc.identifier.citedreferenceCalfapietra C, De Angelis P, Gielen B et al. ( 2007 ) Increased nitrogen-use efficiency of a short-rotation poplar plantation in elevated CO 2 concentration. Tree Physiology, 27, 1153 – 1163.en_US
dc.identifier.citedreferenceCannell MGR, Thornley JHM ( 1998 ) Temperature and CO 2 responses of leaf and canopy photosynthesis: a clarification using the non-rectangular hyperbola model of photosynthesis. Annals of Botany, 82, 883 – 892.en_US
dc.identifier.citedreferenceChoudhury BJ ( 2001 ) Implementing a nitrogen-based model for autotrophic respiration using satellite and field observations. Tropical Ecology, 2, 141 – 174.en_US
dc.identifier.citedreferenceComins HN, McMurtrie RE ( 1993 ) Long-term response of nutrient-limited forests to CO 2 enrichment; equilibrium behavior of plant–soil models. Ecological Applications, 3, 666 – 681.en_US
dc.identifier.citedreferenceCrous KY, Ellsworth DS ( 2004 ) Canopy position affects photosynthetic adjustments to long-term elevated CO 2 concentration (FACE) in aging needles in a mature Pinus taeda forest. Tree Physiology, 24, 961 – 970.en_US
dc.identifier.citedreferenceCrous KY, Walters MB, Ellsworth DS ( 2008 ) Elevated CO 2 concentration affects leaf photosynthesis–nitrogen relationships in Pinus taeda over nine years in FACE. Tree Physiology, 28, 607 – 614.en_US
dc.identifier.citedreferenceDay FP, Stover DB, Pagel AL et al. ( 2006 ) Rapid root closure after fire limits fine root responses to elevated atmospheric CO 2 in a scrub oak ecosystem in central Florida, USA. Global Change Biology, 12, 1047 – 1053.en_US
dc.identifier.citedreferencede Graaff MA, van Groenigen KJ, Six J, Hungate B, van Kessel C ( 2006 ) Interactions between plant growth and soil nutrient cycling under elevated CO 2: a meta-analysis. Global Change Biology, 12, 2077 – 2091.en_US
dc.identifier.citedreferenceDelucia EH, George K, Hamilton JG ( 2002 ) Radiation-use efficiency of a forest exposed to elevated concentrations of atmospheric carbon dioxide. Tree Physiology, 14, 1003 – 1010.en_US
dc.identifier.citedreferenceDeLucia EH, Moore DJ, Norby RJ ( 2005 ) Contrasting responses of forest ecosystems to rising atmospheric CO 2: implications for the global C cycle. Global Biogeochemical Cycles, 19, 1 – 9.en_US
dc.identifier.citedreferenceFinzi AC, Moore DJP, DeLucia EH et al. ( 2006 ) Progressive nitrogen limitation of ecosystem processes under elevated CO 2 in a warm-temperate forest. Ecology, 87, 15 – 25.en_US
dc.identifier.citedreferenceFinzi AC, Norby RJ, Calfapietra C et al. ( 2007 ) Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO 2. Proceedings of the National Academy of Sciences, USA, 104, 14014 – 14019.en_US
dc.identifier.citedreferenceFranklin O ( 2007 ) Optimal nitrogen allocation controls tree responses to elevated CO 2. New Phytologist, 174, 811 – 822.en_US
dc.identifier.citedreferenceFranklin O, Ågren GI ( 2002 ) Leaf senescence and resorption as mechanisms of maximizing photosynthetic production during canopy development at N limitation. Functional Ecology, 16, 727 – 733.en_US
dc.identifier.citedreferenceGarcia MO, Ovasapyan T, Greas M, Treseder KK ( 2008 ) Mycorrhizal dynamics under elevated CO 2 and nitrogen fertilization in a warm temperate forest. Plant and Soil, 303, 301 – 310.en_US
dc.identifier.citedreferenceGifford RM ( 2004 ) The CO 2 fertilising effect – does it occur in the real world? New Phytologist, 163, 221 – 225.en_US
dc.identifier.citedreferenceHamilton JG, DeLucia EH, George K, Naidu SL, Finzi AC, Schlesinger WH ( 2002 ) Forest carbon balance under elevated CO 2. Oecologia Berlin, 131, 250 – 260.en_US
dc.identifier.citedreferenceHubbard RM, Ryan MG, Giardina CP, Barnard H ( 2004 ) The effect of fertilization on sap flux and canopy conductance in a Eucalyptus saligna experimental forest. Global Change Biology, 10, 427 – 436.en_US
dc.identifier.citedreferenceHungate BA, Johnson DW, Dijkstra P et al. ( 2006 ) Nitrogen cycling during seven years of atmospheric CO 2 enrichment in a scrub oak woodland. Ecology, 87, 26 – 40.en_US
dc.identifier.citedreferenceIversen CM, Norby RJ ( 2008 ) Nitrogen limitation in a sweetgum plantation: implications for carbon storage at ORNL. Canadian Journal of Forest Research, 38, 1021 – 1032.en_US
dc.identifier.citedreferenceJohnson DW, Cheng W, Joslin JD, Norby RJ, Edwards NT, Todd DE ( 2004 ) Effects of elevated CO 2 on nutrient cycling in a sweetgum plantation. Biogeochemistry, 69, 379 – 403.en_US
dc.identifier.citedreferenceLuo Y, Su B, Currie WS et al. ( 2004 ) Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide. Bioscience, 54, 731 – 739.en_US
dc.identifier.citedreferenceMaier CA, Palmroth S, Ward E ( 2008 ) Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO 2 concentration. Tree Physiology, 28, 607 – 614.en_US
dc.identifier.citedreferenceMatamala R, Schlesinger WH ( 2000 ) Effects of elevated atmospheric CO 2 on fine root production and activity in an intact temperate forest ecosystem. Global Change Biology, 6, 967 – 979.en_US
dc.identifier.citedreferenceMcCarthy HR, Oren R, Finzi AC, Johnsen KH ( 2006 ) Canopy leaf area constrains [CO 2 ]-induced enhancement of productivity and partitioning among aboveground carbon pools. Proceedings of the National Academy of Sciences, USA, 103, 19356 – 19361.en_US
dc.identifier.citedreferenceMcClain ME, Boyer EW, Dent CL et al. ( 2003 ) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301 – 312.en_US
dc.identifier.citedreferenceMcMurtrie RE ( 1985 ) Forest productivity in relation to carbon partitioning and nutrient cycling: a mathematical model. In: Attributes of Trees as Crop Plants ( eds Cannell MGR, Jackson RB ), pp. 194 – 207. Inst Terr. Ecol. and Natural Environ. Res. Counc., Abbots Ripton, Huntingdon, UK.en_US
dc.identifier.citedreferenceMedlyn BE, McMurtrie RE, Dewar RC, Jeffreys MP ( 2000 ) Soil processes dominate the long-term response of forest net primary productivity to increased temperature and atmospheric CO 2 concentration. Canadian Journal of Forest Research, 30, 873 – 888.en_US
dc.identifier.citedreferenceNadelhoffer KJ ( 2000 ) The potential effects of nitrogen deposition on fine-root production in forest ecosystems. New Phytologist, 147, 131 – 139.en_US
dc.identifier.citedreferenceNorby RJ, DeLucia EH, Gielen B et al. ( 2005 ) Forest response to elevated CO 2 is conserved across a broad range of productivity. Proceedings of the National Academy of Sciences, USA, 102, 18052 – 18056.en_US
dc.identifier.citedreferenceNorby RJ, Iversen CM ( 2006 ) Nitrogen uptake, distribution, turnover, and efficiency of use in a CO 2 -enriched sweetgum forest. Ecology, 87, 5 – 14.en_US
dc.identifier.citedreferenceNorby RJ, Ledford J, Reilly CD, Miller NE, O'Neill EG ( 2004 ) Fine-root production dominates response of a deciduous forest to atmospheric CO 2 enrichment. Proceedings of the National Academy of Sciences, USA, 101, 9689 – 9693.en_US
dc.identifier.citedreferenceNorby RJ, O'Neill EG, Hood G, Luxmoore RJ ( 1987 ) Carbon allocation, root exudation and mycorrhizal colonization of Pinus echinata seedlings grown under CO 2 enrichment. Tree Physiology, 3, 203 – 210.en_US
dc.identifier.citedreferenceNorby RJ, Sholtis JD, Gunderson CA, Jawdy SS ( 2003 ) Leaf dynamics of a deciduous forest canopy: no response to elevated CO 2. Oecologia, 136, 574 – 584.en_US
dc.identifier.citedreferenceOren R, Ellsworth DS, Johnsen KH et al. ( 2001 ) Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature, 411, 469 – 472.en_US
dc.identifier.citedreferencePalmroth S, Oren R, McCarthy HR et al. ( 2006 ) Aboveground sink strength in forests controls the allocation of carbon below ground and its [CO 2 ]-induced enhancement. Proceedings of the National Academy of Sciences, USA, 103, 19362 – 19367.en_US
dc.identifier.citedreferenceParrent JL, Vilgalys R ( 2007 ) Biomass and compositional responses of ectomycorrhizal fungal hyphae to elevated CO 2 and nitrogen fertilization. New Phytologist, 176, 164 – 174.en_US
dc.identifier.citedreferencePastor J, Bridgham SD ( 1999 ) Nutrient efficiency along nutrient availability gradients. Oecologia, 118, 50 – 58.en_US
dc.identifier.citedreferencePhillips RP ( 2007 ) Towards a rhizo-centric view of plant–microbial feedbacks under elevated atmospheric CO 2: commentary. New Phytologist, 173, 664 – 667.en_US
dc.identifier.citedreferencePregitzer KS, Zak DR, Maziasz J, DeForest J, Curtis PS, Lussenhop J ( 2000 ) Interactive effects of atmospheric CO 2 and soil-N availability on fine roots of Populus tremuloides. Ecological Applications, 10, 18 – 33.en_US
dc.identifier.citedreferencePritchard S, Rogers H, Davis M, Santen E, Prior S, Schlesinger W, van SE ( 2001 ) The influence of elevated atmospheric CO 2 on fine root dynamics in an intact temperate forest. Global Change Biology, 7, 829 – 837.en_US
dc.identifier.citedreferenceRastetter EB, Ågren GI, Shaver GR ( 1997 ) Responses of N-limited ecosystems to increased CO 2: a balanced-nutrition, coupled-element-cycles model. Ecological Applications, 7, 444 – 460.en_US
dc.identifier.citedreferenceReich P, Ellsworth D ( 1998 ) Leaf structure (specific leaf area) modulates photosynthesis–nitrogen relations: evidence from within and across species and functional groups. Functional Ecology, 12, 948 – 958.en_US
dc.identifier.citedreferenceReich PB, Hobbie SE, Lee T et al. ( 2006a ) Nitrogen limitation constrains sustainability of ecosystem response to CO 2. Nature, 440, 922 – 925.en_US
dc.identifier.citedreferenceReich PB, Tjoelker MG, Machado JL, Oleksyn J ( 2006b ) Universal scaling of respiratory metabolism, size and nitrogen in plants. Nature, 439, 457 – 461.en_US
dc.identifier.citedreferenceRyan MG, Hubbard RM, Pongracic S, Raison RJ, McMurtrie RE ( 1996 ) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology, 16, 333 – 343.en_US
dc.identifier.citedreferenceSamuelson LJ, Stokes TA ( 2006 ) Transpiration and canopy stomatal conductance of 5-year-old loblolly pine in response to intensive management. Forest Science, 52, 313 – 323.en_US
dc.identifier.citedreferenceSchÄfer KVR, Oren R, Ellsworth DS et al. ( 2003 ) Exposure to an enriched CO 2 atmosphere alters carbon assimilation and allocation in a pine forest ecosystem. Global Change Biology, 9, 1378 – 1400.en_US
dc.identifier.citedreferenceSchimel JP, Bennett J ( 2004 ) Nitrogen mineralization: challenges of a changing paradigm. Ecology, 85, 591 – 602.en_US
dc.identifier.citedreferenceSholtis JD, Gunderson CA, Norby RJ, Tissue DT ( 2004 ) Persistent stimulation of photosynthesis by elevated CO2 in a sweetgum ( Liquidambar styraciflua ) forest stand. New Phytologist, 162, 343 – 354.en_US
dc.identifier.citedreferenceSinsabaugh RL, Saiya-Cork K, Long T, Osgood MP, Neher DA, Zak DR, Norby RJ ( 2003 ) Soil microbial activity in a Liquidambar plantation unresponsive to CO 2-driven increases in primary production. Applied Soil Ecology, 24, 263 – 271.en_US
dc.identifier.citedreferenceStape JL, Binkley D, Ryan MG ( 2004 ) Eucalyptus production and the supply, use and efficiency of use of water, light and nitrogen across a geographic gradient in Brazil. Forest Ecology and Management, 193, 17 – 31.en_US
dc.identifier.citedreferenceStrand AE, Pritchard SG, McCormack ML, Davis MA, Oren R ( 2008 ) Irreconcilable differences: fine-root life spans and soil carbon persistence. Science, 319, 456 – 458.en_US
dc.identifier.citedreferenceTreseder KK, Cross A ( 2006 ) Global distributions of arbuscular mycorrhizal fungi. Ecosystems, 9, 305 – 316.en_US
dc.identifier.citedreferenceVitousek PM, Howarth RW ( 1991 ) Nitrogen limitation on land and in the sea: how can it occur? Biogeochemistry, 13, 87 – 115.en_US
dc.identifier.citedreferenceWithington JM, Reich PB, Oleksyn J, Eissenstat DM ( 2006 ) Comparisons of structure and life span in roots and leaves among temperate trees. Ecological Monographs, 76, 381 – 397.en_US
dc.identifier.citedreferenceWong SC, Cowan IR, Farquhar DG ( 1979 ) Stomatal conductance correlates with photosynthetic capacity. Nature, 282, 424 – 426.en_US
dc.identifier.citedreferenceYanai RD ( 1994 ) A steady-state model of nutrient uptake accounting for newly grown roots. Soil Science Society of America Journal, 58, 1562 – 1571.en_US
dc.identifier.citedreferenceZak DR, Holmes WE, Finzi AC, Norby RJ, Schlesinger WH ( 2003 ) Soil nitrogen cycling under elevated CO 2: a synthesis of forest FACE experiments. Ecological Applications, 13, 1508 – 1514.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.