Show simple item record

The Immunobiology of Inductive Anti-CD40L Therapy in Transplantation: Allograft Acceptance is Not Dependent Upon the Deletion of Graft-Reactive T Cells

dc.contributor.authorNathan, Meera J.en_US
dc.contributor.authorYin, Dengpingen_US
dc.contributor.authorEichwald, Ernst J.en_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T19:57:10Z
dc.date.available2010-06-01T19:57:10Z
dc.date.issued2002-04en_US
dc.identifier.citationNathan, Meera J . ; Yin, Dengping; Eichwald, Ernst J . ; Bishop, D. Keith (2002). "The Immunobiology of Inductive Anti-CD40L Therapy in Transplantation: Allograft Acceptance is Not Dependent Upon the Deletion of Graft-Reactive T Cells." American Journal of Transplantation 2(4): 323-332. <http://hdl.handle.net/2027.42/73082>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73082
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12118853&dopt=citationen_US
dc.format.extent351058 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Munksgaard, 2002en_US
dc.subject.otherCostimulationen_US
dc.subject.otherGraft Acceptanceen_US
dc.subject.otherRegulatory Cellsen_US
dc.titleThe Immunobiology of Inductive Anti-CD40L Therapy in Transplantation: Allograft Acceptance is Not Dependent Upon the Deletion of Graft-Reactive T Cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI 48109; USAen_US
dc.contributor.affiliationother Division of Transplantation, Department of Surgery anden_US
dc.contributor.affiliationother Department of Surgery, Section of Transplantation, Rush Presbyterian St. Luke's Medical Center, Chicago, IL; USAen_US
dc.contributor.affiliationother Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84132, USAen_US
dc.identifier.pmid12118853en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73082/1/j.1600-6143.2002.20406.x.pdf
dc.identifier.doi10.1034/j.1600-6143.2002.20406.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceSchwartz RH. A cell culture model for T lymphocyte clonal anergy. Science 1990; 248: 1349 – 1356.en_US
dc.identifier.citedreferenceFerguson TA, Green D. T cells are just dying to accept grafts. Nat Med 1999; 5: 1231 – 1232.en_US
dc.identifier.citedreferenceLi XC, Wells AD, Strom TB, Turka LA. The role of T cell apoptosis in transplantation tolerance. Curr Opin Immunol 2000; 12: 522 – 527.en_US
dc.identifier.citedreferenceGrewal IS, Flavell RA. A central role of CD40 ligand in the regulation of CD4+ T-cell responses. Immunol Today 1996; 17: 410.en_US
dc.identifier.citedreferenceGudmundsdottir H, Turka LA. T cell costimulatory blockade: New therapies for transplant rejection. J Am Soc Nephrol 1999; 10: 1356 – 1365.en_US
dc.identifier.citedreferenceHarlan DM, Kirk AD. The future of organ and tissue transplantation: Can T-cell costimulatory pathway modifiers revolutionize the prevention of graft rejection? JAMA 1999; 282: 1076 – 1082.en_US
dc.identifier.citedreferenceBlair PJ, Riley JL, Harlan DM et al. CD40 ligand (CD154) triggers a short-term CD4+ T cell activation response that results in a secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191: 651 – 660.en_US
dc.identifier.citedreferenceIwakoshi NN, Mordes JP, Markees TG, Phillips NE, Rosini AA, Greiner DL. Treatment of allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J Immunol 2000; 164: 512 – 521.en_US
dc.identifier.citedreferenceWells AD, Li XC, Li Y et al. Requirement for T-cell apoptosis in the induction of peripheral transplantation tolerance. Nat Med 1999; 5: 1303 – 1307.en_US
dc.identifier.citedreferenceGraca L, Honey K, Adams E, Cobbold SP, Waldmann H. Anti-CD154 therapeutic antibodies induce infectious transplantation tolerance. J Immunol 2000; 165: 4783 – 4786.en_US
dc.identifier.citedreferenceCorry R, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16: 343 – 350.en_US
dc.identifier.citedreferenceChen Z. A technique of cervical heterotopic heart transplantation in mice. Transplantation 1991; 52: 1099 – 1101.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, Li K, Eichwald EJ, Bishop DK. Differential effects of IL-12 receptor blockade with IL-12 p40 homodimer on the induction of CD4+ and CD8+ IFN-γ-producing cells. J Immunol 1997; 158: 643 – 648.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY, Eichwald EJ, Bishop DK. Alloantigen-reactive Th1 helper T lymphocyte development in IL-12 deficient mice. J Immunol 1998; 160: 1132 – 1138.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY, Eichwald EJ, Bishop DK. Cytokine regulation of chronic cardiac allograft rejection: evidence against a role for Th1 in the disease process. Transplantation 1999; 67: 1548 – 1555.en_US
dc.identifier.citedreferenceBishop DK, Orosz CG. Limiting dilution analysis for alloreactive, TCGF-secreting T cells: LDA methods that discriminate between unstimulated precursor T cells and in vivo alloactivated T cells. Transplantation 1989; 47: 671 – 677.en_US
dc.identifier.citedreferenceGlasebrook AL, Fitch FW. Alloreactive cloned T cell lines: interactions between cloned amplifier and cytolytic T cell lines. J Exp Med 1980; 151: 876 – 895.en_US
dc.identifier.citedreferenceOrosz CG, Horstemeyer B, Zinn NE, Bishop DK. Development and evaluation of a limiting dilution analysis technique that can discriminate in vivo alloactivated cytotoxic T lymphocytes from their native precursors. Transplantation 1989; 47: 189 – 194.en_US
dc.identifier.citedreferenceTaswell C. Limiting dilution assays for the determination of immunocompetent cell frequencies. J Immunol 1981; 126: 1614 – 1619.en_US
dc.identifier.citedreferenceMatesic D, Lehmann PV, Heeger PS. High resolution characterization of cytokine-producing alloreactivity in naÏve and allograft-primed mice. Transplantation 1998; 65: 906 – 914.en_US
dc.identifier.citedreferenceBishop DK, Shelby J, Eichwald EJ. Mobilization of T lymphocytes following cardiac transplantation: evidence that CD4-positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 1992; 53: 849 – 857.en_US
dc.identifier.citedreferenceBishop DK, Li W, Chan SY, Ensley RD, Shelby J, Eichwald EJ. Helper T lymphocyte unresponsiveness to cardiac allografts following transient depletion of CD4-positive cells: implications for cellular and humoral responses. Transplantation 1994; 58: 576 – 584.en_US
dc.identifier.citedreferenceKawabe T, Naka T, Yoshida K et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1994; 1: 167 – 178.en_US
dc.identifier.citedreferenceRenshaw BR, Fanslow WC III, Armitage RJ et al. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994; 180: 1889 – 1900.en_US
dc.identifier.citedreferenceSchmid C, Heemann U, Tilney NL. Factors contributing to the development of chronic rejection in heterotopic rat heart transplantation. Transplantation 1997; 64: 222 – 228.en_US
dc.identifier.citedreferenceOrosz CG, Wakely E, Bergese SD et al. Prevention of murine cardiac allograft rejection with gallium nitrate: comparison with anti-CD4 monoclonal antibody. Transplantation 1996; 61: 783 – 791.en_US
dc.identifier.citedreferenceSayegh MH, Akalin E, Hancock WW et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med 1995; 181: 1869 – 1874.en_US
dc.identifier.citedreferenceBishop DK, Wood SC, Eichwald EJ, Orosz CG. Immunobiology of allograft rejection in the absence of IFNγ: CD8+ effector cells develop independently of CD4+ cells and CD40–CD40 ligand interactions. J Immunol 2001; 166: 3248 – 3255.en_US
dc.identifier.citedreferenceLarsen CP, Elwood ET, Alexander DZ et al. Long-term acceptance of skin and allografts after blocking CD40 and CD28 pathways. Nature 1996; 381: 434 – 438.en_US
dc.identifier.citedreferenceMarkees TG, Phillips NE, Noelle RJ et al. Prolonged survival of mouse skin allografts in recipients treated with donor splenocytes and antibody to CD40 ligand. Transplantation 1997; 64: 329 – 335.en_US
dc.identifier.citedreferenceBumgardner GL, Li J, Heininger M, Orosz CG. Costimulation pathways in host immune responses to allogeneic hepatocytes. Transplantation 1998; 66: 1841 – 1845.en_US
dc.identifier.citedreferenceKirk AD, Burkly LC, Batty DS et al. Treatment with humanized monoclonal antibody against CD154 prevents acute renal allograft rejection in non-human primates. Nat Med 1999; 5: 686 – 693.en_US
dc.identifier.citedreferenceSun H, Subbotin V, Chen C et al. Prevention of chronic rejection in mouse aortic allografts by combined treatment with CTLA4-Ig and anti-CD40 ligand monoclonal antibody. Transplantation 1997; 64: 1838 – 1856.en_US
dc.identifier.citedreferenceLu L, Li W, Fu F et al. Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 1997; 64: 1808 – 1815.en_US
dc.identifier.citedreferenceVriens PW, Nisco SJ, Hoyt EG et al. Tissue-specific differences in the establishment of tolerance: tolerogenic effects of lung allografts in rats. Transplantation 1994; 57: 1795 – 1798.en_US
dc.identifier.citedreferenceFedoseyeva EV, Zhang F, Orr PL, Levin D, Buncke HJ, Benichou G. De novo autoimmunity to cardiac myosin after heart transplantation and its contribution to the rejection process. J Immunol 1999; 162: 6836 – 6842.en_US
dc.identifier.citedreferenceWarraich RS, Pomerance A, Stanley A, Banner NR, Dunn MJ, Yacoub MH. Cardiac myosin autoantibodies and acute rejection after heart transplantation in patients with dilated cardiomyopathy. Transplantation 2000; 69: 1609 – 1617.en_US
dc.identifier.citedreferenceFuchimoto Y, Gleit AL, Huang CA et al. Skin-specific alloantigens in miniature swine. Transplantation 2001; 72: 122 – 126.en_US
dc.identifier.citedreferenceZhou P, Seder RA. CD40 ligand is not essential for induction of type 1 cytokine responses or protective immunity after primary or secondary infection with histoplasma capsulatum. J Exp Med 1998; 8: 1315 – 1324.en_US
dc.identifier.citedreferenceStuber E, Strober W, Neurath M. Blocking the CD40L–CD40 interactions in vivo specifically prevents the priming of T helper 1 cells through the inhibition of interleukin 12 secretion. J Exp Med 1996; 2: 693 – 698.en_US
dc.identifier.citedreferenceShimizu K, SchÖnbeck U, Mach F, Libby P, Mitchell PN. Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis. J Immunol 2000; 165: 3506 – 3518.en_US
dc.identifier.citedreferenceLutgens EL, Gorelik MJ, Daemen AP et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999; 5: 1313 – 1316.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, VanBuskirk AM, Eichwald EJ, Bishop DK. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 1997; 63: 619 – 624.en_US
dc.identifier.citedreferenceFowler S, Powrie F. Control of immune pathology by IL-10-secreting regulatory T cells. Springer Semin Immunopathol 1999; 21: 287 – 294.en_US
dc.identifier.citedreferenceLetterio JJ, Roberts AB. Regulation of immune responses by TGF-β. Annu Rev Immunol 1998; 16: 137 – 161.en_US
dc.identifier.citedreferenceCottrez F, Hurst SD, Coffman RL, Grouz H. T regulatory cells 1 inhibit a Th2-specific response in vivo. J Immunol 2000; 165: 4848 – 4853.en_US
dc.identifier.citedreferenceBickertsaff AA, VanBuskirk AM, Wakely E, Orosz CG. Transforming growth factor-beta and interleukin 10 subvert alloreactive delayed hypersensitivity in cardiac allograft acceptor mice. Transplantation 2000; 69: 1517 – 1520.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.