Show simple item record

Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland

dc.contributor.authorHuang, Zhepingen_US
dc.contributor.authorLiu, Tiechengen_US
dc.contributor.authorChattoraj, Asamanjaen_US
dc.contributor.authorAhmed, Samreenen_US
dc.contributor.authorWang, Michael M.en_US
dc.contributor.authorDeng, Jieen_US
dc.contributor.authorSun, Xingen_US
dc.contributor.authorBorjigin, Jimoen_US
dc.date.accessioned2010-06-01T19:57:17Z
dc.date.available2010-06-01T19:57:17Z
dc.date.issued2008-11en_US
dc.identifier.citationHuang, Zheping; Liu, Tiecheng; Chattoraj, Asamanja; Ahmed, Samreen; Wang, Michael M.; Deng, Jie; Sun, Xing; Borjigin, Jimo (2008). "Posttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal gland." Journal of Pineal Research 45(4): 506-514. <http://hdl.handle.net/2027.42/73084>en_US
dc.identifier.issn0742-3098en_US
dc.identifier.issn1600-079Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73084
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18705647&dopt=citationen_US
dc.format.extent1025039 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Munksgaarden_US
dc.subject.other5-hydroxytryptamine (5-HT; Serotonin)en_US
dc.subject.otherCAMPen_US
dc.subject.otherIn Vivo Microdialysisen_US
dc.subject.otherMelatoninen_US
dc.subject.otherPhosphorylationen_US
dc.subject.otherPineal Glanden_US
dc.subject.otherTryptophan Hydroxylase (TPH)en_US
dc.titlePosttranslational regulation of TPH1 is responsible for the nightly surge of 5-HT output in the rat pineal glanden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumNeurology, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartments of Molecular and Integrative Physiologyen_US
dc.contributor.affiliationotherDepartment of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USAen_US
dc.contributor.affiliationotherDepartment of Surgery, Shanghai Pudong New Area People’s Hospital, Shanghai, Chinaen_US
dc.identifier.pmid18705647en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73084/1/j.1600-079X.2008.00627.x.pdf
dc.identifier.doi10.1111/j.1600-079X.2008.00627.xen_US
dc.identifier.sourceJournal of Pineal Researchen_US
dc.identifier.citedreferenceReiter RJ. Melatonin: the chemical expression of darkness. Mol Cell Endocrinol 1991; 79: C153 – C158.en_US
dc.identifier.citedreferenceBorjigin J, Li X, Snyder SH. The pineal gland and melatonin: molecular and pharmacologic regulation. Annu Rev Pharmacol Toxicol 1999; 39: 53 – 65.en_US
dc.identifier.citedreferenceMockus SM, Vrana KE. Advances in the molecular characterization of tryptophan hydroxylase. J Mol Neurosci 1998; 10: 163 – 179.en_US
dc.identifier.citedreferenceShibuya H, Toru M, Watanabe S. A circadian rhythm of tryptophan hydroxylase in rat pineals. Brain Res 1977; 138: 364 – 368.en_US
dc.identifier.citedreferenceSitaram BR, Lees GJ. Diurnal rhythm and turnover of tryptophan hydroxylase in the pineal gland of the rat. J Neurochem 1978; 31: 1021 – 1026.en_US
dc.identifier.citedreferenceSun X, Liu T, Deng J et al. Long-term in vivo pineal microdialysis. J Pineal Res 2003; 35: 118 – 124.en_US
dc.identifier.citedreferenceBorjigin J, Liu T. Application of long-term microdialysis in circadian rhythm research. Pharmacol Biochem Behav 2008; 90: 148 – 155.en_US
dc.identifier.citedreferenceSun X, Deng J, Liu T et al. Circadian 5-HT production regulated by adrenergic signaling. Proc Natl Acad Sci U S A 2002; 99: 4686 – 4691.en_US
dc.identifier.citedreferenceLiu T, Borjigin J. Relationship between nocturnal serotonin surge and melatonin onset in rodent pineal gland. J Circadian Rhythms, 2006; 4: 12.en_US
dc.identifier.citedreferenceGreen CB, Besharse JC, Zatz M. Tryptophan hydroxylase mRNA levels are regulated by the circadian clock, temperature, and cAMP in chick pineal cells. Brain Res 1996; 738: 1 – 7.en_US
dc.identifier.citedreferenceFlorez JC, Seidenman KJ, Barrett RK et al. Molecular cloning of chick pineal tryptophan hydroxylase and circadian oscillation of its mRNA levels. Brain Res Mol Brain Res 1996; 42: 25 – 30.en_US
dc.identifier.citedreferenceGreen CB, Cahill GM, Besharse JC. Regulation of tryptophan hydroxylase expression by a retinal circadian oscillator in vitro. Brain Res 1995; 677: 283 – 290.en_US
dc.identifier.citedreferenceSugden D. Comparison of circadian expression of tryptophan hydroxylase isoform mRNAs in the rat pineal gland using real-time PCR. J Neurochem 2003; 86: 1308 – 1311.en_US
dc.identifier.citedreferenceToru M, Watanabe S, Nishikawa T et al. Physiological and pharmacological properties of circadian rhythm of tryptophan hydroxylase in rat pineals. Adv Biosci 1978; 21: 253 – 255.en_US
dc.identifier.citedreferenceVrana KE, Rucker PJ, Kumer SC. Recombinant rabbit tryptophan hydroxylase is a substrate for cAMP-dependent protein kinase. Life Sci 1994; 55: 1045 – 1052.en_US
dc.identifier.citedreferenceKuhn DM, Arthur R, States JC. Phosphorylation and activation of brain tryptophan hydroxylase: identification of serine-58 as a substrate site for protein kinase A. J Neurochem 1997; 68: 2220 – 2223.en_US
dc.identifier.citedreferenceKumer SC, Mockus SM, Rucker PJ, Vrana KE. Amino-terminal analysis of tryptophan hydroxylase: protein kinase phosphorylation occurs at serine-58. J Neurochem 1997; 69: 1738 – 1745.en_US
dc.identifier.citedreferenceSimonneaux V, Ribelayga C. Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 2003; 55: 325 – 395.en_US
dc.identifier.citedreferenceDrijfhout WJ, Van Der Linde AG, De Vries JB. Microdialysis reveals dynamics of coupling between noradrenaline release and melatonin secretion in conscious rats. Neurosci Lett 1996; 202: 185 – 188.en_US
dc.identifier.citedreferenceRoseboom PH, Coon SL, Baler R et al. Melatonin synthesis: analysis of the more than 150-fold nocturnal increase in serotonin N-acetyltransferase messenger ribonucleic acid in the rat pineal gland. Endocrinology 1996; 137: 3033 – 3045.en_US
dc.identifier.citedreferenceWinge I, Mckinney JA, Ying M et al. Activation and stabilization of human tryptophan hydroxylase 2 by phosphorylation and 14-3-3 binding. Biochem J 2008; 410: 195 – 204.en_US
dc.identifier.citedreferenceKlein DC. Arylalkylamine N-acetyltransferase: “the Timezyme”. J Biol Chem 2007; 282: 4233 – 4237.en_US
dc.identifier.citedreferenceHuang Z, Deng J, Borjigin J. A novel H28Y mutation in LEC rats leads to decreased NAT protein stability in vivo and in vitro. J Pineal Res 2005; 39: 84 – 90.en_US
dc.identifier.citedreferenceD’sa CM, Arthur RE Jr, Kuhn DM. Expression and deletion mutagenesis of tryptophan hydroxylase fusion proteins: delineation of the enzyme catalytic core. J Neurochem 1996; 67: 917 – 926.en_US
dc.identifier.citedreferenceCash CD. Why tryptophan hydroxylase is difficult to purify: a reactive oxygen-derived species-mediated phenomenon that may be implicated in human pathology. Gen Pharmacol 1998; 30: 569 – 574.en_US
dc.identifier.citedreferenceFlorez JC, Takahashi JS. Regulation of tryptophan hydroxylase by cyclic AMP, calcium, norepinephrine, and light in cultured chick pineal cells. J Neurochem 1996; 67: 242 – 250.en_US
dc.identifier.citedreferenceChoi BH, Chae HD, Park TJ et al. Protein kinase C regulates the activity and stability of serotonin N-acetyltransferase. J Neurochem 2004; 90: 442 – 454.en_US
dc.identifier.citedreferenceGanguly S, Gastel JA, Weller JL et al. Role of a pineal cAMP-operated arylalkylamine N-acetyltransferase/14-3-3-binding switch in melatonin synthesis. Proc Natl Acad Sci USA 2001; 98: 8083 – 8088.en_US
dc.identifier.citedreferenceWalther DJ, Peter JU, Bashammakh S et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.en_US
dc.identifier.citedreferenceGrenett HE, Ledley FD, Reed LL et al. Full-length cDNA for rabbit tryptophan hydroxylase: functional domains and evolution of aromatic amino acid hydroxylases. Proc Natl Acad Sci U S A 1987; 84: 5530 – 5534.en_US
dc.identifier.citedreferenceYang XJ, Kaufman S. High-level expression and deletion mutagenesis of human tryptophan hydroxylase. Proc Natl Acad Sci U S A 1994; 91: 6659 – 6663.en_US
dc.identifier.citedreferenceMockus SM, Kumer SC, Vrana KE. A chimeric tyrosine/tryptophan hydroxylase. The tyrosine hydroxylase regulatory domain serves to stabilize enzyme activity. J Mol Neurosci 1997; 9: 35 – 48.en_US
dc.identifier.citedreferenceCarkaci-Salli N, Flanagan JM, Martz MK et al. Functional domains of human tryptophan hydroxylase 2 (hTPH2). J Biol Chem 2006; 281: 28105 – 28112.en_US
dc.identifier.citedreferenceBanik U, Wang GA, Wagner PD et al. Interaction of phosphorylated tryptophan hydroxylase with 14-3-3 proteins. J Biol Chem 1997; 272: 26219 – 26225.en_US
dc.identifier.citedreferenceMurphy KL, Zhang X, Gainetdinov RR et al. A regulatory domain in the N-terminus of tryptophan hydroxylase 2 controls enzyme expression. J Biol Chem 2008; 238: 13216 – 13224.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.