Show simple item record

The radial velocity dispersion profile of the Galactic halo: constraining the density profile of the dark halo of the Milky Way

dc.contributor.authorBattaglia, Giuseppinaen_US
dc.contributor.authorHelmi, Aminaen_US
dc.contributor.authorMorrison, Heatheren_US
dc.contributor.authorHarding, Paulen_US
dc.contributor.authorOlszewski, Edward W.en_US
dc.contributor.authorMateo, Marioen_US
dc.contributor.authorFreeman, Kenneth C.en_US
dc.contributor.authorNorris, Johnen_US
dc.contributor.authorShectman, Stephen A.en_US
dc.date.accessioned2010-06-01T19:57:25Z
dc.date.available2010-06-01T19:57:25Z
dc.date.issued2005-12en_US
dc.identifier.citationBattaglia, Giuseppina; Helmi, Amina; Morrison, Heather; Harding, Paul; Olszewski, Edward W.; Mateo, Mario; Freeman, Kenneth C.; Norris, John; Shectman, Stephen A. (2005). "The radial velocity dispersion profile of the Galactic halo: constraining the density profile of the dark halo of the Milky Way." Monthly Notices of the Royal Astronomical Society 364(2): 433-442. <http://hdl.handle.net/2027.42/73086>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73086
dc.description.abstractWe have compiled a new sample of 240 halo objects with accurate distance and radial velocity measurements, including globular clusters, satellite galaxies, field blue horizontal branch (FHB) stars and red giant stars from the Spaghetti survey. The new data lead to a significant increase in the number of known objects for Galactocentric radii beyond 50 kpc, which allows a reliable determination of the radial velocity dispersion profile out to very large distances. The radial velocity dispersion shows an almost constant value of 120 km s −1 out to 30 kpc and then continuously declines down to 50 km s −1 at about 120 kpc. This fall-off puts important constraints on the density profile and total mass of the dark matter halo of the Milky Way. For a constant velocity anisotropy, the isothermal profile is ruled out, while both a dark halo following a truncated flat (TF) model of mass 1.2 +1.8 −0.5 × 10 12  M ⊙ and a Navarro, Frenk & White (NFW) profile of mass 0.8 +1.2 −0.2 × 10 12  M ⊙ and c = 18 are consistent with the data. The significant increase in the number of tracers combined with the large extent of the region probed by these has allowed a more precise determination of the Milky Way mass in comparison to previous works. We also show how different assumptions for the velocity anisotropy affect the performance of the mass models.en_US
dc.format.extent624940 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 RASen_US
dc.subject.otherGalaxy: Haloen_US
dc.subject.otherGalaxy: Kinematics and Dynamicsen_US
dc.subject.otherGalaxy: Structureen_US
dc.subject.otherDark Matteren_US
dc.titleThe radial velocity dispersion profile of the Galactic halo: constraining the density profile of the dark halo of the Milky Wayen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumAstronomy Department, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherKapteyn Astronomical Institute, University of Groningen, PO Box 800, 9700 AV Groningen, the Netherlandsen_US
dc.contributor.affiliationotherAstronomy Department, Case Western Reserve University, Cleveland, OH 44106, USAen_US
dc.contributor.affiliationotherSteward Observatory, University of Arizona, Tucson, AZ 85721, USAen_US
dc.contributor.affiliationotherResearch School of Astronomy & Astrophysics, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston ACT 2611, Australiaen_US
dc.contributor.affiliationotherCarnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73086/1/j.1365-2966.2005.09367.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2005.09367.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceBeers T. C., Chiba, M., Yoshii Y., Platais I., Hanson R. B., Fuchs B., Rossi S., 2000, AJ, 119, 2866en_US
dc.identifier.citedreferenceBellazzini M., 2004, MNRAS, 347, 119en_US
dc.identifier.citedreferenceBinney J., Tremaine S., 1987, Galactic Dynamics. Princeton Univ. Press, Princeton, NJen_US
dc.identifier.citedreferenceBissantz N., Debattista V. P., Gerhard O., 2004, ApJ, 601, L155en_US
dc.identifier.citedreferenceBullock J. S., Kolatt T. S., Sigad Y., Somerville R. S., Kravtsov A. V., Klypin A. A., Primack J. R., Dekel A., 2001, MNRAS, 321, 559en_US
dc.identifier.citedreferenceCarretta E., Gratton R. G., Clementini G., Pecci F. F., 2000, ApJ, 533, 215en_US
dc.identifier.citedreferenceChiba M., Yoshii Y., 1998, AJ, 115, 168en_US
dc.identifier.citedreferenceClewley L., Warren S. J., Hewett P. C., Norris J. E., Peterson R. C., Evans N. W., 2002, MNRAS, 337, 87en_US
dc.identifier.citedreferenceClewley L., Warren S. J., Hewett P. C., Norris J. E., Peterson R. C., Evans N. W., 2004, MNRAS, 352, 285en_US
dc.identifier.citedreferencede Blok W. F. G., McGaugh S., Rubin V., 2001, AJ, 122, 2396en_US
dc.identifier.citedreferenceDehnen W., Binney J., 1998, MNRAS, 294, 429en_US
dc.identifier.citedreferenceDiemand J., Moore B., Stadel J., 2004, MNRAS, 352, 535en_US
dc.identifier.citedreferenceDinescu D. I., Girard T. M., van Altena W. F., 1999, AJ, 117, 1792en_US
dc.identifier.citedreferenceDinescu D. I., Keeney B. A., Majewski S. R., Girard T. M., 2004, AJ, 128, 687en_US
dc.identifier.citedreferenceEvans N. W., Binney J., 2001, MNRAS, 327, L27en_US
dc.identifier.citedreferenceFich M., Tremaine S., 1991, ARA&A, 29, 409en_US
dc.identifier.citedreferenceGao L., De Lucia G., White S. D. M., Jenkins A., 2004, MNRAS, 352, 1en_US
dc.identifier.citedreferenceGhigna S., Moore B., Governato F., Lake G., Quinn T., Stadel J., 1998, MNRAS, 300, 146en_US
dc.identifier.citedreferenceHarris W. E., 1996, AJ, 112, 1487en_US
dc.identifier.citedreferenceHonma M., Sofue Y., 1997, PASJ, 49, 453en_US
dc.identifier.citedreferenceJaffe W., 1983, MNRAS, 202, 995en_US
dc.identifier.citedreferenceKlypin A., Zhao H., Somerville R. S., 2002, ApJ, 573, 597en_US
dc.identifier.citedreferenceKochanek C. S., 1996, ApJ, 457, 228en_US
dc.identifier.citedreferenceKroupa P., Bastian U., 1997, New Astron., 2, 77en_US
dc.identifier.citedreferenceMateo M., 1998, ARA&A, 36, 435en_US
dc.identifier.citedreferenceMorrison H., Mateo M., Olszewski E. W., Harding P., Dohm-Palmer R. C., Freeman K. C., Norris J. E., Morita M., 2000, AJ, 119, 2254en_US
dc.identifier.citedreferenceMorrison H. et al., 2003, AJ, 125, 2502en_US
dc.identifier.citedreferenceNavarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493en_US
dc.identifier.citedreferencePerryman M. A. C. et al., 2001, A&A, 369, 339en_US
dc.identifier.citedreferencePiatek S., Pryor C., Olszewski E. W., Harris H. C., Mateo M., Minniti D., Tinney C. G., 2003, AJ, 126, 2346en_US
dc.identifier.citedreferenceRatnatunga K., Freeman K. C., 1989, ApJ, 339, 126en_US
dc.identifier.citedreferenceRohlfs K., Kreitschmann J., 1988, A&A, 201, 51en_US
dc.identifier.citedreferenceRomanowsky A. J., Douglas N. G., Arnaboldi M., Kuijken K., Merrifield M. R., Napolitano N. R., Capaccioli M., Freeman K. C., 2003, Sci, 301, 1696en_US
dc.identifier.citedreferenceSakamoto T., Chiba M., Beers T. C., 2003, A&A, 397, 899 ( SCB03 )en_US
dc.identifier.citedreferenceSchweitzer A. E., Cudworth K. M., Majewski S. R., Suntzeff N. B., 1995, AJ, 110, 2747en_US
dc.identifier.citedreferenceSchweitzer A. E., Cudworth K. M., Majewski S. R., 1997, PASP, 127, 103en_US
dc.identifier.citedreferenceSirko E. et al., 2004a, AJ, 127, 914en_US
dc.identifier.citedreferenceSirko E. et al., 2004b, AJ, 127, 899en_US
dc.identifier.citedreferenceSommer-Larsen J., Beers T. C., Flynn C., Wilhelm R., Christensen P. R., 1997, ApJ, 481, 775en_US
dc.identifier.citedreferenceTaylor J. E., Babul A., Silk J., 2004, in Prada F., Martinez-Delgado D., Mahoney T. J., eds, ASP Conf. Ser. Vol. 327, Satellites and Tidal Streams. Astron. Soc. Pac., San Francisco, p. 205en_US
dc.identifier.citedreferenceWechsler R. H., Bullock J. S., Primack J. R., Kravtsov A. V., Avishai D. A., 2002, ApJ, 568, 52en_US
dc.identifier.citedreferenceWhite S. D. M., 1983, ApJ, 274, 53en_US
dc.identifier.citedreferenceWilhelm R., Beers T. C., Sommer-Larsen J., Pier J. R., Layden A. C., Flynn C., Rossi S., Christensen P. R., 1999, AJ, 117, 2329en_US
dc.identifier.citedreferenceWilkinson M., Evans N. W., 1999, MNRAS, 310, 645 ( W&E99 )en_US
dc.identifier.citedreferenceYanny et al., 2000, ApJ, 540, 825en_US
dc.identifier.citedreferenceZaritsky D., Olszewski E. W., Schommer R. A., Peterson R. C., Aaronson M., 1989, ApJ, 345, 759en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.