Show simple item record

Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence

dc.contributor.authorIvanov, Maya I.en_US
dc.contributor.authorStuckey, Jeanne A.en_US
dc.contributor.authorSchubert, Heidi L.en_US
dc.contributor.authorSaper, Mark A.en_US
dc.contributor.authorBliska, James B.en_US
dc.date.accessioned2010-06-01T19:58:28Z
dc.date.available2010-06-01T19:58:28Z
dc.date.issued2005-03en_US
dc.identifier.citationIvanov, Maya I.; Stuckey, Jeanne A.; Schubert, Heidi L.; Saper, Mark A.; Bliska, James B. (2005). "Two substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulence." Molecular Microbiology 55(5): 1346-1356. <http://hdl.handle.net/2027.42/73103>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73103
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15720545&dopt=citationen_US
dc.description.abstractYopH is a protein tyrosine phosphatase and an essential virulence determinant of the pathogenic bacterium Yersinia. Yersinia delivers YopH into infected host cells using a type III secretion mechanism. YopH dephosphorylates several focal adhesion proteins including p130Cas in human epithelial cells, resulting in disruption of focal adhesions and cell detachment from the extracellular matrix. How the C-terminal protein tyrosine phosphatase domain of YopH targets specific substrates such as p130Cas in the complex milieu of the host cell has not been fully elucidated. An N-terminal non-catalytic domain of YopH binds p130Cas in a phosphotyrosine-dependent manner and functions as a novel substrate-targeting site. The structure of the YopH protein tyrosine phosphatase domain bound to a model phosphopeptide substrate was solved and the resulting structure revealed a second substrate-targeting site (‘site 2’) within the catalytic domain. Site 2 binds to p130Cas in a phosphotyrosine-dependent manner, and co-operates with the N-terminal domain (‘site 1’) to promote efficient recognition of p130Cas by YopH in epithelial cells. The identification of two substrate-targeting sites in YopH that co-operate to promote epithelial cell detachment and bacterial virulence reinforces the importance of protein–protein interactions for determining protein tyrosine phosphatase specificity in vivo , and highlights the sophisticated nature of microbial pathogenicity factors.en_US
dc.format.extent555909 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.titleTwo substrate-targeting sites in the Yersinia protein tyrosine phosphatase co-operate to promote bacterial virulenceen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109-1055, USA.en_US
dc.contributor.affiliationotherDepartment of Molecular Genetics and Microbiology and Center for Infectious Diseases, State University of New York at Stony Brook, Stony Brook, NY 11794-5222, USA.en_US
dc.identifier.pmid15720545en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73103/1/j.1365-2958.2005.04477.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2005.04477.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBlack, D. S., and Bliska, J. B. ( 1997 ) Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16: 2730 – 2744.en_US
dc.identifier.citedreferenceBlack, D. S., Montagna, L. G., Zitzmann, S., and Bliska, J. B. ( 1998 ) Identification of an amino-terminal substrate-binding domain in the Yersinia tyrosine phosphatase that is required for efficient recognition of focal adhesion targets. Mol Microbiol 5: 1263 – 1274.en_US
dc.identifier.citedreferenceBlack, D. S., Marie-Cardine, A., Schraven, B., and Bliska, J. B. ( 2000 ) The Yersinia tyrosine phosphatase YopH targets a novel adhesion-regulated signalling complex in macrophages. Cell Microbiol 2: 401 – 414.en_US
dc.identifier.citedreferenceBliska, J. B. ( 2000 ) Yop effectors of Yersinia spp. and actin rearrangements. Trends Microbiol 8: 205 – 208.en_US
dc.identifier.citedreferenceBliska, J. B., Guan, K. L., Dixon, J. E., and Falkow, S. ( 1991 ) Tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci USA 88: 1187 – 1191.en_US
dc.identifier.citedreferenceBrunger, A. T., Adams, P. D., Clore, G. M., DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., et al. ( 1998 ) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr 54: 905 – 921.en_US
dc.identifier.citedreferenceBouton, A. H., Riggins, R. B., and Bruce-Staskal, P. J. ( 2001 ) Functions of the adapter protein Cas: signal convergence and the determination of cellular responses. Oncogene 20: 6448 – 6458.en_US
dc.identifier.citedreferenceCarniel, E. ( 2002 ) Plasmids and pathogenicity islands of Yersinia. Curr Top Microbiol Immunol 264: 89 – 108.en_US
dc.identifier.citedreferenceCarniel, E., Autenrieth, I. B., Cornelis, G., Fukushima, H., Guinet, F., Isberg, R., et al. ( 2002 ) Y. enterocolitica and Y. pseudotuberculosis. In The Prokaryotes, an Evolving Electronic Resource for the Microbiological Community, 3rd edn. Dworkin, M., Falkow, S., Rosenberg, E., Scheifer, K. H., and Stackebrandt, E. (eds). New York: Springer-Verlag.en_US
dc.identifier.citedreferenceCornelis, G. R. ( 2002 ) The Yersinia Ysc-Yop ‘type III’ weaponry. Nat Rev Mol Cell Biol 3: 742 – 752.en_US
dc.identifier.citedreferenceDeleuil, F., Mogemark, L., Francis, M. S., Wolf-Watz, H., and Fallman, M. ( 2003 ) Interaction between the Yersinia protein tyrosine phosphatase YopH and eukaryotic Cas/Fyb is an important virulence mechanism. Cell Microbiol 5: 53 – 64.en_US
dc.identifier.citedreferenceFÄllman, M., Persson, C., and Wolf-Watz, H. ( 1997 ) Yersinia proteins that target host cell signaling pathways. J Clin Invest 99: 1153 – 1157.en_US
dc.identifier.citedreferenceGoldberg, G. S., Alexander, D. B., Pellicena, P., Zhang, Z. Y., Tsuda, H., and Miller, W. T. ( 2003 ) Src phosphorylates Cas on tyrosine 253 to promote migration of transformed cells. J Biol Chem 278: 46533 – 46540.en_US
dc.identifier.citedreferenceGuan, K., and Dixon, J. E. ( 1990 ) Protein tyrosine phosphatase activity of an essential virulence determinant in Yersinia. Science 249: 553 – 556.en_US
dc.identifier.citedreferenceHueck, C. J. ( 1998 ) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379 – 433.en_US
dc.identifier.citedreferenceKhandelwal, P., Keliikuli, K., Smith, C. L., Saper, M. A., and Zuiderweg, E. R. ( 2002 ) Solution structure and phosphopeptide binding to the N-terminal domain of Yersinia YopH: comparison with a crystal structure. Biochemistry 41: 11425 – 11437.en_US
dc.identifier.citedreferenceMauro, L. J., and Dixon, J. E. ( 1994 ) ‘Zip codes’ direct intracellular protein tyrosine phosphatases to the correct cellular ‘address’. Trends Biol Sci 19: 151 – 155.en_US
dc.identifier.citedreferenceMesserschmidt, A., and Pflugrath, J. W. ( 1987 ) Crystal orientation and X-ray pattern prediction routines for area-detector diffractometer systems in macromolecular crystallography. J Appl Cryst 20: 306 – 325.en_US
dc.identifier.citedreferenceMontagna, L. G., Ivanov, M. I., and Bliska, J. B. ( 2001 ) Identification of residues in the N-terminal domain of the Yersinia tyrosine phosphatase that are critical for substrate recognition. J Biol Chem 276: 5005 – 5011.en_US
dc.identifier.citedreferencePalmer, L. E., Hobbie, S., Galan, J. E., and Bliska, J. B. ( 1998 ) YopJ of Yersinia pseudotuberculosis is required for the inhibition of macrophage TNFΑ production and the downregulation of the MAP kinases p38 and JNK. Mol Microbiol 27: 953 – 965.en_US
dc.identifier.citedreferencePerry, R. D., and Fetherston, J. D. ( 1997 ) Yersinia pestis -etiologic agent of plague. Clin Microbiol Rev 10: 35 – 66.en_US
dc.identifier.citedreferencePersson, C., Carballeira, N., Wolf-Watz, H., and Fallman, M. ( 1997 ) The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J 16: 2307 – 2318.en_US
dc.identifier.citedreferencePersson, C., Nordfelth, R., Andersson, K., Forsberg, A., Wolf-Watz, H., and Fallman, M. ( 1999 ) Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Mol Microbiol 33: 828 – 838.en_US
dc.identifier.citedreferencePhan, J., Lee, K., Cherry, S., Tropea, J. E., Burke, T. R., Jr, and Waugh, D. S. ( 2003 ) High-resolution structure of the Yersinia pestis protein tyrosine phosphatase YopH in complex with a phosphotyrosyl mimetic-containing hexapeptide. Biochemistry 42: 13113 – 13121.en_US
dc.identifier.citedreferenceRamamurthi, K. S., and Schneewind, O. ( 2002 ) Type III protein secretion in Yersinia species. Annu Rev Cell Dev Biol 18: 107 – 133.en_US
dc.identifier.citedreferenceRevell, P. A., and Miller, V. L. ( 2001 ) Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205: 159 – 164.en_US
dc.identifier.citedreferenceRiley, G., and Toma, S. ( 1989 ) Detection of pathogenic Yersinia enterocolitica by using congo red-magnesium oxalate agar medium. J Clin Microbiol 27: 213 – 214.en_US
dc.identifier.citedreferenceSmith, C. L., Khandelwal, P., Keliikuli, K., Zuiderweg, E. R., and Saper, M. A. ( 2001 ) Structure of the type III secretion and substrate-binding domain of Yersinia YopH phosphatase. Mol Microbiol 42: 967 – 979.en_US
dc.identifier.citedreferenceStuckey, J. A., Schubert, H. L., Fauman, E. B., Zhang, Z. -Y., Dixon, J. E., and Saper, M. A. ( 1994 ) Crystal structure of Yersinia protein tyrosine phosphatase at 2.5A and the complex with tungstate. Nature 370: 571 – 575.en_US
dc.identifier.citedreferenceTonks, N. K., and Neel, B. G. ( 2001 ) Combinatorial control of the specificity of protein tyrosine phosphatases. Curr Opin Cell Biol 13: 182 – 195.en_US
dc.identifier.citedreferenceUne, T., and Brubaker, R. R. ( 1984 ) In vivo comparison of avirulent Vwa – and Pgm – or Pstr phenotypes of Yersiniae. Infect Immun 43: 895 – 900.en_US
dc.identifier.citedreferenceZhang, Z. Y., Clemens, J. C., Schubert, H. L., Stuckey, J. A., Fischer, M. W. F., Hume, D. M., et al. ( 1992 ) Expression, purification and physiochemical characterization of a recombinant Yersinia tyrosine phosphatase. J Biol Chem 267: 23759 – 23766.en_US
dc.identifier.citedreferenceZhang, Z. -Y., Wang, Y., Wu, L., Fauman, E. B., Stuckey, J. A., Schubert, H. L., et al. ( 1994a ) The Cys(X)5Arg catalytic motif in phosphodiester hydrolysis. Biochem 33: 15266 – 15270.en_US
dc.identifier.citedreferenceZhang, Z. -Y., Maclean, D., McNamara, D. J., Sawyer, T. K., and Dixon, J. E. ( 1994b ) Protein tyrosine phosphatase substrate specificity: size and phosphotyrosine positioning requirements in peptide substrates. Biochemistry 33: 2285 – 2290.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.