Show simple item record

Transplant Acceptance Following Anti-CD4 Versus Anti-CD40L Therapy: Evidence for Differential Maintenance of Graft-Reactive T Cells

dc.contributor.authorWood, S. C.en_US
dc.contributor.authorLu, G.en_US
dc.contributor.authorBurrell, B. E.en_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T20:01:04Z
dc.date.available2010-06-01T20:01:04Z
dc.date.issued2008-10en_US
dc.identifier.citationWood, S. C.; Lu, G.; Burrell, B. E.; Bishop, D. K. (2008). "Transplant Acceptance Following Anti-CD4 Versus Anti-CD40L Therapy: Evidence for Differential Maintenance of Graft-Reactive T Cells." American Journal of Transplantation 8(10): 2037-2048. <http://hdl.handle.net/2027.42/73145>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73145
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18828767&dopt=citationen_US
dc.format.extent581796 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights© 2008 American Society of Transplantation and the American Society of Transplant Surgeonsen_US
dc.subject.otherBasic Immunologyen_US
dc.subject.otherCardiac Allograft Toleranceen_US
dc.subject.otherCD4 + T Cellsen_US
dc.subject.otherCostimulation Blockadeen_US
dc.titleTransplant Acceptance Following Anti-CD4 Versus Anti-CD40L Therapy: Evidence for Differential Maintenance of Graft-Reactive T Cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSection of General Surgery, Department of Surgery, University of Michigan School of Medicine, Ann Arbor, MIen_US
dc.identifier.pmid18828767en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73145/1/j.1600-6143.2008.02372.x.pdf
dc.identifier.doi10.1111/j.1600-6143.2008.02372.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceBishop DK, Shelby J, Eichwald EJ. Mobilization of T lymphocytes following cardiac transplantation: Evidence that CD4-positive cells are required for cytotoxic T lymphocyte activation, inflammatory endothelial development, graft infiltration, and acute allograft rejection. Transplantation 1992; 53: 849 – 857.en_US
dc.identifier.citedreferenceBishop DK, Chan WS, Eichwald EJ, Orosz CG. Immunobiology of allograft rejection in the absence of IFN-gamma: CD8+ effector cells develop independently of CD4+ cells and CD40-CD40 ligand interactions. J Immunol 2001; 166: 3248 – 3255.en_US
dc.identifier.citedreferenceNathan MJ, Yin D, Eichwald EJ, Bishop DK. The immunobiology of inductive anti-CD40L therapy in transplantation: Allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2002; 2: 323 – 332.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY, Eichwald EJ, Bishop DK. Cytokine regulation of chronic cardiac allograft rejection: Evidence against a role for Th1 in the disease process. Transplantation 1999; 67: 1548 – 1555.en_US
dc.identifier.citedreferenceCsencsits K, Wood SC, Lu G et al. Transforming growth factor beta-induced connective tissue growth factor and chronic allograft rejection. Am J Transplant 2006; 6: 959 – 966.en_US
dc.identifier.citedreferenceCorry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16: 343 – 350.en_US
dc.identifier.citedreferenceBishop DK, Li W, Chan SY, Ensley RD, Shelby J, Eichwald EJ. Helper T lymphocyte unresponsiveness to cardiac allografts following transient depletion of CD4-positive cells. Implications for cellular and humoral responses. Transplantation 1994; 58: 576 – 584.en_US
dc.identifier.citedreferenceMatesic D, Lehmann PV, Heeger PS. High-resolution characterization of cytokine-producing alloreactivity in naive and allograft-primed mice. Transplantation 1998; 65: 906 – 914.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, Goodman RE, Magram J, Eichwald EJ, Bishop DK. IL-12 antagonism induces T helper 2 responses, yet exacerbates cardiac allograft rejection. Evidence against a dominant protective role for T helper 2 cytokines in alloimmunity. J Immunol 1996; 157: 1951 – 1957.en_US
dc.identifier.citedreferenceChan SY, DeBruyne LA, Goodman RE, Eichwald EJ, Bishop DK. In vivo depletion of CD8+ T cells results in Th2 cytokine production and alternate mechanisms of allograft rejection. Transplantation 1995; 59: 1155 – 1161.en_US
dc.identifier.citedreferenceGhobrial RR, Boublik M, Winn HJ, Auchincloss H, Jr. In vivo use of monoclonal antibodies against murine T cell antigens. Clin Immunol Immunopathol 1989; 52: 486 – 506.en_US
dc.identifier.citedreferenceBlair PJ, Riley JL, Harlan DM et al. CD40 ligand (CD154) triggers a short-term CD4 + T cell activation response that results in secretion of immunomodulatory cytokines and apoptosis. J Exp Med 2000; 191: 651 – 660.en_US
dc.identifier.citedreferenceChen Y, Heeger PS, Valujskikh A. In vivo helper functions of alloreactive memory CD4+ T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J Immunol 2004; 172: 5456 – 5466.en_US
dc.identifier.citedreferencePiccotti JR, Chan SY, VanBuskirk AM, Eichwald EJ, Bishop DK. Are Th2 helper T lymphocytes beneficial, deleterious, or irrelevant in promoting allograft survival? Transplantation 1997; 63: 619 – 624.en_US
dc.identifier.citedreferenceLe Moine A, Goldman M, Abramowicz D. Multiple pathways to allograft rejection. Transplantation 2002; 73: 1373 – 1381.en_US
dc.identifier.citedreferenceLe Moine A, Goldman M. Non-classical pathways of cell-mediated allograft rejection: New challenges for tolerance induction? Am J Transplant 2003; 3: 101 – 106.en_US
dc.identifier.citedreferenceRocha PN, Plumb TJ, Crowley SD, Coffman TM. Effector mechanisms in transplant rejection. Immunol Rev 2003; 196: 51 – 64.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY et al. Alloantigen-reactive Th1 development in IL-12-deficient mice. J Immunol 1998; 160: 1132 – 1138.en_US
dc.identifier.citedreferenceLe Moine A, Surquin M, Demoor FX et al. IL-5 mediates eosinophilic rejection of MHC class II-disparate skin allografts in mice. J Immunol 1999; 163: 3778 – 3784.en_US
dc.identifier.citedreferenceLe Moine A, Flamand V, Demoor F-X et al. Critical roles for IL-4, IL-5, and eosinophils in chronic skin allograft rejection. J Clin Invest 1999; 103: 1659 – 1667.en_US
dc.identifier.citedreferenceMartinez OM, Ascher NL, Ferrell L et al. Evidence for a nonclassical pathway of graft rejection involving interleukin 5 and eosinophils. Transplantation 1993; 55: 909 – 918.en_US
dc.identifier.citedreferenceAuchincloss H, Jr. In search of the elusive Holy Grail: The mechanisms and prospects for achieving clinical transplantation tolerance. Am J Transplant 2001; 1: 6 – 12.en_US
dc.identifier.citedreferenceNewell KA, Larsen CP, Kirk AD. Transplant tolerance: Converging on a moving target. Transplantation 2006; 81: 1 – 6.en_US
dc.identifier.citedreferenceVincenti F. What's in the pipeline? New immunosuppressive drugs in transplantation. Am J Transplant 2002; 2: 898 – 903.en_US
dc.identifier.citedreferenceWaldmann H, Cobbold S. Exploiting tolerance processes in transplantation. Science 2004; 305: 209 – 212.en_US
dc.identifier.citedreferenceLechler RI, Sykes M, Thomson AW, Turka LA. Organ transplantation–how much of the promise has been realized? Nat Med 2005; 11: 605 – 613.en_US
dc.identifier.citedreferenceKirk AD. Induction immunosuppression. Transplantation 2006; 82: 593 – 602.en_US
dc.identifier.citedreferenceBotto M, Dell'Agnola C, Bygrave AE et al. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 1998; 19: 56 – 59.en_US
dc.identifier.citedreferenceBass H, Mosmann T, Strober S. Evidence for mouse Th1- and Th2-like helper T cells in vivo. Selective reduction of Th1-like cells after total lymphoid irradiation. J Exp Med 1989; 170: 1495 – 1511.en_US
dc.identifier.citedreferenceJain S, Furness PN, Nicholson ML. The role of transforming growth factor beta in chronic renal allograft nephropathy. Transplantation 2000; 69: 1759 – 1766.en_US
dc.identifier.citedreferenceLetterio JJ, Roberts AB. Regulation of immune responses by TGF-beta. Annu Rev Immunol 1998; 16: 137 – 161.en_US
dc.identifier.citedreferenceLi MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 2006; 24: 99 – 146.en_US
dc.identifier.citedreferenceZiegler SF. FOXP3: Of mice and men. Annu Rev Immunol 2006; 24: 209 – 226.en_US
dc.identifier.citedreferenceNoelle RJ, Roy M, Shepherd DM, Stamenkovic I, Ledbetter JA, Aruffo A. A 39-kDa protein on activated helper T cells binds CD40 and transduces the signal for cognate activation of B cells. Proc Natl Acad Sci USA 1992; 89: 6550 – 6554.en_US
dc.identifier.citedreferenceGrewal IS, Flavell RA. A central role of CD40 ligand in the regulation of CD4 +T-cell responses. Immunol Today 1996; 17: 410 – 414.en_US
dc.identifier.citedreferencevan Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol 2000; 67: 2 – 17.en_US
dc.identifier.citedreferenceKirk AD, Blair PJ, Tadaki DK, Xu H, Harlan DM. The role of CD154 in organ transplant rejection and acceptance. Philos Trans R Soc Lond B Biol Sci 2001; 356: 691 – 702.en_US
dc.identifier.citedreferenceQuezada SA, Jarvinen LZ, Lind EF, Noelle RJ. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 2004; 22: 307 – 328.en_US
dc.identifier.citedreferenceStout RD, Suttles J. The many roles of CD40 in cell-mediated inflammatory responses. Immunol Today 1996; 17: 487 – 492.en_US
dc.identifier.citedreferencevan Kooten C, Banchereau J. Functions of CD40 on B cells, dendritic cells and other cells. Curr Opin Immunol 1997; 9: 330 – 337.en_US
dc.identifier.citedreferenceGrewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111 – 135.en_US
dc.identifier.citedreferenceNathan MJ, Mold JE, Wood SC et al. Requirement for donor and recipient CD40 expression in cardiac allograft rejection: Induction of Th1 responses and influence of donor-derived dendritic cells. J Immunol 2004; 172: 6626 – 6633.en_US
dc.identifier.citedreferenceBlotta MH, Marshall JD, DeKruyff RH, Umetsu DT. Cross-linking of the CD40 ligand on human CD4+ T lymphocytes generates a costimulatory signal that up-regulates IL-4 synthesis. J Immunol 1996; 156: 3133 – 3140.en_US
dc.identifier.citedreferencevan Essen D, Kikutani H, Gray D. CD40 ligand-transduced co-stimulation of T cells in the development of helper function. Nature 1995; 378: 620 – 623.en_US
dc.identifier.citedreferenceArmitage RJ, Fanslow WC, Strockbine L et al. Molecular and biological characterization of a murine ligand for CD40. Nature 1992; 357: 80 – 82.en_US
dc.identifier.citedreferenceCastle BE, Kishimoto K, Stearns C, Brown ML, Kehry MR. Regulation of expression of the ligand for CD40 on T helper lymphocytes. J Immunol 1993; 151: 1777 – 1788.en_US
dc.identifier.citedreferenceRoy M, Waldschmidt T, Aruffo A, Ledbetter JA, Noelle RJ. The regulation of the expression of gp39, the CD40 ligand, on normal and cloned CD4+ T cells. J Immunol 1993; 151: 2497 – 2510.en_US
dc.identifier.citedreferenceFord GS, Barnhart B, Shone S, Covey LR. Regulation of CD154 (CD40 ligand) mRNA stability during T cell activation. J Immunol 1999; 162: 4037 – 4044.en_US
dc.identifier.citedreferenceLee BO, Haynes L, Eaton SM, Swain SL, Randall TD. The biological outcome of CD40 signaling is dependent on the duration of CD40 ligand expression: Reciprocal regulation by interleukin (IL)-4 and IL-12. J Exp Med 2002; 196: 693 – 704.en_US
dc.identifier.citedreferenceSanchez*-Fueyo A, Domenig C, Strom TB, Zheng XX. The complement dependent cytotoxicity (CDC) immune effector mechanism contributes to anti-CD154 induced immunosuppression. Transplantation 2002; 74: 898 – 900.en_US
dc.identifier.citedreferenceMonk NJ, Hargreaves RE, Marsh JE et al. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med 2003; 9: 1275 – 1280.en_US
dc.identifier.citedreferenceWood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199 – 210.en_US
dc.identifier.citedreferenceKang SM, Tang Q, Bluestone JA. CD4+CD25+ regulatory T cells in transplantation: Progress, challenges and prospects. Am J Transplant 2007; 7: 1457 – 1463.en_US
dc.identifier.citedreferenceRoncarolo MG, Levings MK. The role of different subsets of T regulatory cells in controlling autoimmunity. Curr Opin Immunol 2000; 12: 676 – 683.en_US
dc.identifier.citedreferenceShevach EM. CD4+ CD25+ suppressor T cells: More questions than answers. Nat Rev Immunol 2002; 2: 389 – 400.en_US
dc.identifier.citedreferenceJonuleit H, Schmitt E. The regulatory T cell family: Distinct subsets and their interrelations. J Immunol 2003; 171: 6323 – 6327.en_US
dc.identifier.citedreferenceZou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 2006; 6: 295 – 307.en_US
dc.identifier.citedreferenceChen D, Bromberg JS. T regulatory cells and migration. Am J Transplant 2006; 6: 1518 – 1523.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.