Show simple item record

Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation

dc.contributor.authorWithey, Jeffrey H.en_US
dc.contributor.authorDiRita, Victor J.en_US
dc.date.accessioned2010-06-01T20:02:21Z
dc.date.available2010-06-01T20:02:21Z
dc.date.issued2005-05en_US
dc.identifier.citationWithey, Jeffrey H.; DiRita, Victor J. (2005). "Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation." Molecular Microbiology 56(4): 1062-1077. <http://hdl.handle.net/2027.42/73166>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73166
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15853890&dopt=citationen_US
dc.description.abstractThe Gram-negative bacterium Vibrio cholerae is the infectious agent responsible for the disease Asiatic cholera. The genes required for V. cholerae virulence, such as those encoding the cholera toxin (CT) and toxin-coregulated pilus (TCP), are controlled by a cascade of transcriptional activators. Ultimately, the direct transcriptional activator of the majority of V. cholerae virulence genes is the AraC/XylS family member ToxT protein, the expression of which is activated by the ToxR and TcpP proteins. Previous studies have identified the DNA sites to which ToxT binds upstream of the ctx operon, encoding CT, and the tcpA operon, encoding, among other products, the major subunit of the TCP. These known ToxT binding sites are seemingly dissimilar in sequence other than being A/T rich. Further results suggested that ctx and tcpA each has a pair of ToxT binding sites arranged in a direct repeat orientation upstream of the core promoter elements. In this work, using both transcriptional lacZ fusions and in vitro copper-phenanthroline footprinting experiments, we have identified the ToxT binding sites between the divergently transcribed acfA and acfD genes, which encode components  of the accessory colonization factor required for efficient intestinal colonization by V. cholerae . Our results indicate that ToxT binds to a pair of DNA sites between acfA and acfD in an inverted repeat orientation. Moreover, a mutational analysis of the ToxT binding sites indicates that both binding sites are required by ToxT for transcriptional activation of both acfA and acfD . Using copper-phenanthroline footprinting to assess the occupancy of ToxT on DNA having mutations in one of these binding sites, we found that protection by ToxT of the unaltered binding site was not affected, whereas protection by ToxT of the mutant binding site was significantly reduced in the region of the mutations. The results of further footprinting experiments using DNA templates having +5 bp and +10 bp insertions between the two ToxT binding sites indicate that both binding sites are occupied by ToxT regardless of their positions relative to each other. Based on these results, we propose that ToxT binds independently to two DNA sites between acfA and acfD to activate transcription of both genes.en_US
dc.format.extent358929 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.titleActivation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUnit for Laboratory Animal Medicine and Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-0614, USA.en_US
dc.identifier.pmid15853890en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73166/1/j.1365-2958.2005.04589.x.pdf
dc.identifier.doi10.1111/j.1365-2958.2005.04589.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceBehari, J., Stagon, L., and Calderwood, S. B. ( 2001 ) pepA, a gene mediating pH regulation of virulence genes in Vibrio cholerae. J Bacteriol 183: 178 – 188.en_US
dc.identifier.citedreferenceBrown, R. C., and Taylor, R. K. ( 1995 ) Organization of tcp, acf, and toxT genes within a ToxT-dependent operon. Mol Microbiol 16: 425 – 439.en_US
dc.identifier.citedreferenceBrowning, D. F., Beatty, C. M., Wolfe, A. J., Cole, J. A., and Busby, S. J. ( 2002 ) Independent regulation of the divergent Escherichia coli nrfA and acsP1 promoters by a nucleoprotein assembly at a shared regulatory region. Mol Microbiol 43: 687 – 701.en_US
dc.identifier.citedreferenceChampion, G. A., Neely, M. N., Brennan, M. A., and DiRita, V. J. ( 1997 ) A branch in the ToxR regulatory cascade of Vibrio cholerae revealed by characterization of toxT mutant strains. Mol Microbiol 23: 323 – 331.en_US
dc.identifier.citedreferenceD’Orazio, S. E., Thomas, V., and Collins, C. M. ( 1996 ) Activation of transcription at divergent urea-dependent promoters by the urease gene regulator UreR. Mol Microbiol 21: 643 – 655.en_US
dc.identifier.citedreferenceDiRita, V. J., Parsot, C., Jander, G., and Mekalanos, J. J. ( 1991 ) Regulatory cascade controls virulence in Vibrio cholerae. Proc Natl Acad Sci USA 88: 5403 – 5407.en_US
dc.identifier.citedreferenceEgan, S. M., and Schleif, R. F. ( 1994 ) DNA-dependent renaturation of an insoluble DNA binding protein. Identification of the RhaS binding site at rhaBAD. J Mol Biol 243: 821 – 829.en_US
dc.identifier.citedreferenceEl-Robh, M. S., and Busby, S. J. ( 2002 ) The Escherichia coli cAMP receptor protein bound at a single target can activate transcription initiation at divergent promoters: a systematic study that exploits new promoter probe plasmids. Biochem J 368: 835 – 843.en_US
dc.identifier.citedreferenceField, M., Fromm, D., al-Awqati, Q., and Greenough, W. B., 3rd ( 1972 ) Effect of cholera enterotoxin on ion transport across isolated ileal mucosa. J Clin Invest 51: 796 – 804.en_US
dc.identifier.citedreferenceFinkelstein, R. A. ( 1973 ) Cholera. CRC Crit Rev Microbiol 2: 553 – 623.en_US
dc.identifier.citedreferenceGallegos, M. T., Schleif, R., Bairoch, A., Hofmann, K., and Ramos, J. L. ( 1997 ) AraC/XylS family of transcriptional regulators. Microbiol Mol Biol Rev 61: 393 – 410.en_US
dc.identifier.citedreferenceGill, D. M. ( 1976 ) The arrangement of subunits in cholera toxin. Biochemistry 15: 1242 – 1248.en_US
dc.identifier.citedreferenceGriffith, K. L., and Wolf, R. E., Jr ( 2001 ) Systematic mutagenesis of the DNA binding sites for SoxS in the Escherichia coli zwf and fpr promoters: identifying nucleotides required for DNA binding and transcription activation. Mol Microbiol 40: 1141 – 1154.en_US
dc.identifier.citedreferenceGriffith, K. L., Shah, I. M., Myers, T. E., O'Neill, M. C., and Wolf, R. E., Jr ( 2002 ) Evidence for ‘pre-recruitment’ as a new mechanism of transcription activation in Escherichia coli: the large excess of SoxS binding sites per cell relative to the number of SoxS molecules per cell. Biochem Biophys Res Commun 291: 979 – 986.en_US
dc.identifier.citedreferenceHarkey, C. W., Everiss, K. D., and Peterson, K. M. ( 1994 ) The Vibrio cholerae toxin-coregulated-pilus gene tcpI encodes a homolog of methyl-accepting chemotaxis proteins. Infect Immun 62: 2669 – 2678.en_US
dc.identifier.citedreferenceHarkey, C. W., Everiss, K. D., and Peterson, K. M. ( 1995 ) Isolation and characterization of a Vibrio cholerae gene ( tagA ) that encodes a ToxR-regulated lipoprotein. Gene 153: 81 – 84.en_US
dc.identifier.citedreferenceHase, C. C., and Mekalanos, J. J. ( 1998 ) TcpP protein is a positive regulator of virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 95: 730 – 734.en_US
dc.identifier.citedreferenceHiggins, D. E., and DiRita, V. J. ( 1994 ) Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 14: 17 – 29.en_US
dc.identifier.citedreferenceHiggins, D. E., Nazareno, E., and DiRita, V. J. ( 1992 ) The virulence gene activator ToxT from Vibrio cholerae is a member of the AraC family of transcriptional activators. J Bacteriol 174: 6974 – 6980.en_US
dc.identifier.citedreferenceHolmgren, J., Lonnroth, I., and Svennerholm, L. ( 1973 ) Fixation and inactivation of cholera toxin by GM1 ganglioside. Scand J Infect Dis 5: 77 – 78.en_US
dc.identifier.citedreferenceHorton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. ( 1989 ) Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77: 61 – 68.en_US
dc.identifier.citedreferenceHorton, R. M., Ho, S. N., Pullen, J. K., Hunt, H. D., Cai, Z., and Pease, L. R. ( 1993 ) Gene splicing by overlap extension. Methods Enzymol 217: 270 – 279.en_US
dc.identifier.citedreferenceHulbert, R. R., and Taylor, R. K. ( 2002 ) Mechanism of ToxT-dependent transcriptional activation at the Vibrio cholerae tcpA promoter. J Bacteriol 184: 5533 – 5544.en_US
dc.identifier.citedreferenceIbarra, J. A., Villalba, M. I., and Puente, J. L. ( 2003 ) Identification of the DNA binding sites of PerA, the transcriptional activator of the bfp and per operons in enteropathogenic Escherichia coli. J Bacteriol 185: 2835 – 2847.en_US
dc.identifier.citedreferenceJobling, M. G., and Holmes, R. K. ( 1997 ) Characterization of hapR, a positive regulator of the Vibrio cholerae HA/protease gene hap, and its identification as a functional homologue of the Vibrio harveyi luxR gene. Mol Microbiol 26: 1023 – 1034.en_US
dc.identifier.citedreferenceKaraolis, D. K., Johnson, J. A., Bailey, C. C., Boedeker, E. C., Kaper, J. B., and Reeves, P. R. ( 1998 ) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci USA 95: 3134 – 3139.en_US
dc.identifier.citedreferenceKaufman, M. R., Shaw, C. E., Jones, I. D., and Taylor, R. K. ( 1993 ) Biogenesis and regulation of the Vibrio cholerae toxin-coregulated pilus: analogies to other virulence factor secretary systems. Gene 126: 43 – 49.en_US
dc.identifier.citedreferenceKovacikova, G., and Skorupski, K. ( 1999 ) A Vibrio cholerae LysR homolog, AphB, cooperates with AphA at the tcpPH promoter to activate expression of the ToxR virulence cascade. J Bacteriol 181: 4250 – 4256.en_US
dc.identifier.citedreferenceKovacikova, G., and Skorupski, K. ( 2001 ) Overlapping binding sites for the virulence gene regulators AphA, AphB and cAMP-CRP at the Vibrio cholerae tcpPH promoter. Mol Microbiol 41: 393 – 407.en_US
dc.identifier.citedreferenceKovacikova, G., and Skorupski, K. ( 2002a ) Binding site requirements of the virulence gene regulator AphB: differential affinities for the Vibrio cholerae classical and El Tor tcpPH promoters. Mol Microbiol 44: 533 – 547.en_US
dc.identifier.citedreferenceKovacikova, G., and Skorupski, K. ( 2002b ) Regulation of virulence gene expression in Vibrio cholerae by quorum sensing: HapR functions at the aphA promoter. Mol Microbiol 46: 1135 – 1147.en_US
dc.identifier.citedreferenceKovacikova, G., Lin, W., and Skorupski, K. ( 2003 ) The virulence activator AphA links quorum sensing to pathogenesis and physiology in Vibrio cholerae by repressing the expression of a penicillin amidase gene on the small chromosome. J Bacteriol 185: 4825 – 4836.en_US
dc.identifier.citedreferenceKrukonis, E. S., and DiRita, V. J. ( 2003 ) DNA binding and ToxR responsiveness by the wing domain of TcpP, an activator of virulence gene expression in Vibrio cholerae. Mol Cell 12: 157 – 165.en_US
dc.identifier.citedreferenceKrukonis, E. S., Yu, R. R., and Dirita, V. J. ( 2000 ) The Vibrio cholerae ToxR/TcpP/ToxT virulence cascade: distinct roles for two membrane-localized transcriptional activators on a single promoter. Mol Microbiol 38: 67 – 84.en_US
dc.identifier.citedreferenceKwon, H. J., Bennik, M. H., Demple, B., and Ellenberger, T. ( 2000 ) Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat Struct Biol 7: 424 – 430.en_US
dc.identifier.citedreferenceLinn, T., and St Pierre, R. ( 1990 ) Improved vector system for constructing transcriptional fusions that ensures independent translation of lacZ. J Bacteriol 172: 1077 – 1084.en_US
dc.identifier.citedreferenceLonnroth, I., and Holmgren, J. ( 1973 ) Subunit structure of cholera toxin. J Gen Microbiol 76: 417 – 427.en_US
dc.identifier.citedreferenceMarques, S., Gallegos, M. T., Manzanera, M., Holtel, A., Timmis, K. N., and Ramos, J. L. ( 1998 ) Activation and repression of transcription at the double tandem divergent promoters for the xylR and xylS genes of the TOL plasmid of Pseudomonas putida. J Bacteriol 180: 2889 – 2894.en_US
dc.identifier.citedreferenceMartin, R. G., and Rosner, J. L. ( 2001 ) The AraC transcriptional activators. Curr Opin Microbiol 4: 132 – 137.en_US
dc.identifier.citedreferenceMartin, R. G., Gillette, W. K., Rhee, S., and Rosner, J. L. ( 1999 ) Structural requirements for marbox function in transcriptional activation of mar / sox / rob regulon promoters in Escherichia coli: sequence, orientation and spatial relationship to the core promoter. Mol Microbiol 34: 431 – 441.en_US
dc.identifier.citedreferenceMartin, R. G., Gillette, W. K., Martin, N. I., and Rosner, J. L. ( 2002 ) Complex formation between activator and RNA polymerase as the basis for transcriptional activation by MarA and SoxS in Escherichia coli. Mol Microbiol 43: 355 – 370.en_US
dc.identifier.citedreferenceMiller, J. H. ( 1972 ) Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.en_US
dc.identifier.citedreferenceMiller, M. B., Skorupski, K., Lenz, D. H., Taylor, R. K., and Bassler, B. L. ( 2002 ) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110: 303 – 314.en_US
dc.identifier.citedreferenceNelson, H. C., Finch, J. T., Luisi, B. F., and Klug, A. ( 1987 ) The structure of an oligo(dA).oligo(dT) tract and its biological implications. Nature 330: 221 – 226.en_US
dc.identifier.citedreferenceNye, M. B., Pfau, J. D., Skorupski, K., and Taylor, R. K. ( 2000 ) Vibrio cholerae H-NS silences virulence gene expression at multiple steps in the ToxR regulatory cascade. J Bacteriol 182: 4295 – 4303.en_US
dc.identifier.citedreferenceOgierman, M. A., Zabihi, S., Mourtzios, L., and Manning, P. A. ( 1993 ) Genetic organization and sequence of the promoter-distal region of the tcp gene cluster of Vibrio cholerae. Gene 126: 51 – 60.en_US
dc.identifier.citedreferencePapavassiliou, A. G. ( 1994 ) 1,10-phenanthroline-copper ion nuclease footprinting of DNA-protein complexes in situ following mobility-shift electrophoresis assays. In Methods in Molecular Biology, Vol. 5. Kneale, G. G. (ed.). New Jersey: Humana Press, pp. 43 – 78.en_US
dc.identifier.citedreferenceParsot, C., and Mekalanos, J. J. ( 1991 ) Expression of the Vibrio cholerae gene encoding aldehyde dehydrogenase is under control of ToxR, the cholera toxin transcriptional activator. J Bacteriol 173: 2842 – 2851.en_US
dc.identifier.citedreferenceParsot, C., and Mekalanos, J. J. ( 1992 ) Structural analysis of the acfA and acfD genes of Vibrio cholerae: effects of DNA topology and transcriptional activators on expression. J Bacteriol 174: 5211 – 5218.en_US
dc.identifier.citedreferenceParsot, C., Taxman, E., and Mekalanos, J. J. ( 1991 ) ToxR regulates the production of lipoproteins and the expression of serum resistance in Vibrio cholerae. Proc Natl Acad Sci USA 88: 1641 – 1645.en_US
dc.identifier.citedreferencePeterson, K. M., and Mekalanos, J. J. ( 1988 ) Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56: 2822 – 2829.en_US
dc.identifier.citedreferenceRaibaud, O., Vidal-Ingigliardi, D., and Richet, E. ( 1989 ) A complex nucleoprotein structure involved in activation of transcription of two divergent Escherichia coli promoters. J Mol Biol 205: 471 – 485.en_US
dc.identifier.citedreferenceRecchi, C., Sclavi, B., Rauzier, J., Gicquel, B., and Reyrat, J. M. ( 2003 ) Mycobacterium tuberculosis Rv1395 is a class III transcriptional regulator of the AraC family involved in cytochrome P450 regulation. J Biol Chem 278: 33763 – 33773.en_US
dc.identifier.citedreferenceRhee, S., Martin, R. G., Rosner, J. L., and Davies, D. R. ( 1998 ) A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc Natl Acad Sci USA 95: 10413 – 10418.en_US
dc.identifier.citedreferenceRhee, K. Y., Opel, M., Ito, E., Hung, S., Arfin, S. M., and Hatfield, G. W. ( 1999 ) Transcriptional coupling between the divergent promoters of a prototypic LysR-type regulatory system, the ilvYC operon of Escherichia coli. Proc Natl Acad Sci USA 96: 14294 – 14299.en_US
dc.identifier.citedreferenceSchleif, R. ( 2000 ) Regulation of the 1-arabinose operon of Escherichia coli. Trends Genet 16: 559 – 565.en_US
dc.identifier.citedreferenceSkorupski, K., and Taylor, R. K. ( 1999 ) A new level in the Vibrio cholerae ToxR virulence cascade: AphA is required for transcriptional activation of the tcpPH operon. Mol Microbiol 31: 763 – 771.en_US
dc.identifier.citedreferenceTaylor, R. K., Miller, V. L., Furlong, D. B., and Mekalanos, J. J. ( 1987 ) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84: 2833 – 2837.en_US
dc.identifier.citedreferenceThomas, V. J., and Collins, C. M. ( 1999 ) Identification of UreR binding sites in the Enterobacteriaceae plasmid-encoded and Proteus mirabilis urease gene operons. Mol Microbiol 31: 1417 – 1428.en_US
dc.identifier.citedreferenceTobes, R., and Ramos, J. L. ( 2002 ) AraC-XylS database: a family of positive transcriptional regulators in bacteria. Nucleic Acids Res 30: 318 – 321.en_US
dc.identifier.citedreferenceUrbach, A. R., and Dervan, P. B. ( 2001 ) Toward rules for 1:1 polyamide:DNA recognition. Proc Natl Acad Sci USA 98: 4343 – 4348.en_US
dc.identifier.citedreferenceWaldor, M. K., and Mekalanos, J. J. ( 1996 ) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272: 1910 – 1914.en_US
dc.identifier.citedreferenceYamazaki, H., Tomono, A., Ohnishi, Y., and Horinouchi, S. ( 2004 ) DNA-binding specificity of AdpA, a transcriptional activator in the A-factor regulatory cascade in Streptomyces griseus. Mol Microbiol 53: 555 – 572.en_US
dc.identifier.citedreferenceYu, R. R., and DiRita, V. J. ( 1999 ) Analysis of an autoregulatory loop controlling ToxT, cholera toxin, and toxin-coregulated pilus production in Vibrio cholerae. J Bacteriol 181: 2584 – 2592.en_US
dc.identifier.citedreferenceYu, R. R., and DiRita, V. J. ( 2002 ) Regulation of gene expression in Vibrio cholerae by ToxT involves both antirepression and RNA polymerase stimulation. Mol Microbiol 43: 119 – 134.en_US
dc.identifier.citedreferenceZhu, J., Miller, M. B., Vance, R. E., Dziejman, M., Bassler, B. L., and Mekalanos, J. J. ( 2002 ) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99: 3129 – 3134.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.