Show simple item record

In vitro and In vivo Models for the Reconstruction of Intercellular Signaling a ,

dc.contributor.authorBouhadir, Kamal H.en_US
dc.contributor.authorMooney, David J.en_US
dc.date.accessioned2010-06-01T20:09:12Z
dc.date.available2010-06-01T20:09:12Z
dc.date.issued1998-04en_US
dc.identifier.citationBOUHADIR, KAMAL H.; MOONEY, DAVID J. (1998). " In vitro and In vivo Models for the Reconstruction of Intercellular Signaling a , ." Annals of the New York Academy of Sciences 842(1 SALIVARY GLAND BIOGENESIS AND FUNCTION ): 188-194. <http://hdl.handle.net/2027.42/73277>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73277
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9599309&dopt=citationen_US
dc.description.abstractA critical need in both tissue-engineering applications and basic cell culture studies is the development of synthetic extracellular matrices (ECMs) and experimental systems that reconstitute three-dimensional cell-cell interactions and control tissue formation in vitro and in vivo . We have fabricated synthetic ECMs in the form of fiber-based fabrics, highly porous sponges, and hydrogels from biodegradable polymers ( e.g. , polyglycolic acid) and tested their ability to regulate tissue formation. Both cell seeding onto these synthetic ECMs and subsequent culture conditions can be varied to control initial cell-cell interactions and subsequent cell growth and tissue development. Three-dimensional tissues composed of cells of interest, matrix produced by these cells, and the synthetic ECM (until it degrades) can be created with these systems. For example, smooth muscle cells can be grown on polyglycolic acid fiber-based synthetic ECMs to produce tissues with cell densities in excess of 10 8 cells/mL. These tissues contain extensive elastin and collagen, and the smooth muscle cells within the tissue express the contractile phenotype ( e.g. , Α-actin staining). Similar approaches can be used to grow a number of other tissues ( e.g. , dental pulp) that resemble the native tissue. These engineered tissues may provide novel experimental systems to study the role of three-dimensional intercellular signaling in tissue development and may also find clinical application as replacements to lost or damaged tissues.en_US
dc.format.extent2921897 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsNew York Academy of Sciences 1998en_US
dc.titleIn vitro and In vivo Models for the Reconstruction of Intercellular Signaling a ,en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartments of Chemical Engineering and Biological and Materials Sciences, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid9599309en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73277/1/j.1749-6632.1998.tb09647.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1998.tb09647.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreference1 American Liver Foundation. 1988. Vital statistics of the United States 2, part A. New Jersey: ALF.en_US
dc.identifier.citedreferenceLanger, R. & J.P. Vacanti. 1993. Tissue engineering. Science 260: 920 – 926.en_US
dc.identifier.citedreferenceNerem, R.M. & A. Sambanis. 1995. Tissue engineering: From biology to biological substitutes. Tissue Eng. 1: 3 – 13.en_US
dc.identifier.citedreferenceRuoslabti, E. & M.D. Pierschbacker. 1987. Science 238: 491 – 497.en_US
dc.identifier.citedreference5 Huang, S.J. 1989. Biodegradable Polymers. In Polymers-Biomaterials and Medical Applications. J. I. Kroschwitz, Ed.: 5-28. Wiley & Sons. New York.en_US
dc.identifier.citedreferenceFrazza, E. J., & E.E. Scmitt. 1971. A new absorbable suture. J. Biomed. Mater. Res. Symp. 1: 43 – 48.en_US
dc.identifier.citedreferenceKatz, A.R. & R. Turner. 1970. Evaluation of tensile strength and absorption properties of polyglycolic acid sutures. Surg. Gynecol. & Obstet. 131: 701 – 716.en_US
dc.identifier.citedreferenceReed, A.M. & D.K. Gidding. 1981. Biodegradable polymers for use in surgerypoly(glycolic)/poly(lactic acid) homo and copolymers. Polymer 22: 494 – 498.en_US
dc.identifier.citedreference9 Mooney, D.J. & R.S. Langer. 1995. Engineering Biomaterials for tissue engineering: The 10-100 micron size scale. In The Biomedical Engineering Handbook. J. D. Bronzino, Ed.: 1609-1618. Boca Raton: CRC Press.en_US
dc.identifier.citedreferenceMooney, D.J., G. Organ, J. Vacanti & R. Langer. 1994. Design and fabrication of cell delivery devices to engineer tubular tissues. Cell Transplant. 3: 203 – 210.en_US
dc.identifier.citedreferenceMooney, D.J., S. Park, P.M. Kaufman, K. Sano, K. McNamara, P. Vacanti & R. Langer. 1995. Transplantation of hepatocytes using porous, biodegradable sponges. Transplant. Proc. 26: 4025 – 4026.en_US
dc.identifier.citedreferenceMooney, D.J., C. Breuer, K. McNamara, P. Vacanti & R. Langer. 1995. Fabricating tubular devices from polymers of lactic and glycolic acid for tissue engineering. Tissue Eng. 1: 107 – 118.en_US
dc.identifier.citedreferenceMooney, D.J., D.F. Baldwin, N.P. Suh, J.P. Vacanti & R. Langer. 1996. Novel approach to fabricate porous sponges of poly(d,l-lactic-co-glycolic acid) without the use of organic solvents. Biomaterials 17: 1417 – 1422.en_US
dc.identifier.citedreferenceSchmidt, R.J., L.Y. Chung, A.M. Andrews, O. Spyratou & T.D. Turner. 1992. Biocompatibility of wound management products: A study of the effects of various polysaccharides on murine L929 fibroblasts proliferation and macrophage respiratory burst. J. Pharm. Pharmacol. 45: 508 – 513.en_US
dc.identifier.citedreference15 Sutherland, I.W. 1991. Alginates. In Biomaterials: Novel materials from biological sources. D. Byron, Ed. Stockton Press. New York.en_US
dc.identifier.citedreference16 Kim, B-S., A.J. Putman, T.J. Kulik & D.J. Mooney. Submitted.en_US
dc.identifier.citedreferenceMooney, D.J., S. Park, P.M. Kaufman, K. Sano, K. McNamara, P.J. Vacanti & R. Langer. 1995. Biodegradable sponges for hepatocyte transplantation. J. Biomed. Mater. Res. 29: 959 – 965.en_US
dc.identifier.citedreferenceMooney, D.J., C. Powell, J. Piana & B. Rutherford. 1996. Engineering dental pulp-like tissue in vitro. Biotechnol. Prog. 12: 865 – 868.en_US
dc.identifier.citedreferenceMa, P.X., B. Schloo, D.J. Mooney & R. Langer. 1995. Development of biomechanical properties and morphogenesis of in vitro tissue engineered cartilage. J. Biomed. Mater. Res. 29: 1587 – 1595.en_US
dc.identifier.citedreferencePuelacher, W.C., D.J. Mooney, R. Langer, J.P. Vacanti & C.A. Vacanti. 1994. Design of nasoseptal cartilage replacements synthesized from biodegradable polymers and chondrocytes 15: 774 – 778.en_US
dc.identifier.citedreferenceMooney, D.J., C.L. Mazzoni, C. Breuer, K. McNamara, D. Hern, J.P. Vacanti & R. Langer. 1996. Stabilized polyglycolic acid fiber-based tubes for tissue engineering. Biomaterials 17: 115 – 124.en_US
dc.identifier.citedreferencePaige, K.T., L.G. Cima, M.J. Yaremchuk, B.L. Scloo, J.V. Vacanti & C.A. Vacanti. 1995. De novo cartilage generation using calcium alginate-chondrocyte constructs. Plast. Reconstr. Surg. 97: 168 – 178.en_US
dc.identifier.citedreferencePaige, K.T., L.G. Cima, M.J. Yaremchuk & J.V. Vacanti. 1995. Injectable cartilage. Plast. Reconstr. Surg. 96: 1390 – 1398.en_US
dc.identifier.citedreferenceAtala, A., L.G. Cima, W. Kim, K.T. Paige, J.V. Vacanti, A.B. Retik & C.A. Vacanti. 1993. Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux. J. Urol. 150: 745 – 747.en_US
dc.identifier.citedreferenceAtala, A., W. Kim, K.T. Paige, C.A. Vacanti & A.B. Retik. 1994. Endoscopic treatment of vesicoureteral reflux with a chondrocyte-alginate suspension. J. Urol. 152: 641 – 643.en_US
dc.identifier.citedreferenceOrgan, G.M., D.J. Mooney & L.K. Hansen. 1992. Enterocyte transplantation using cell polymer devices to produce a neointestine. Transplant. Proc. 24: 3009 – 3011.en_US
dc.identifier.citedreferenceOrgan, G.M., D.J. Mooney & L.K. Hansen. 1993. Enterocyte transplantation using cell polymer devices to create epithelial-lined tubes. Transplant. Proc. 25: 998 – 1001.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.