Show simple item record

Evolution of the Corticotropin-releasing Hormone Signaling System and Its Role in Stress-induced Phenotypic Plasticity

dc.contributor.authorDenver, Robert Johnen_US
dc.date.accessioned2010-06-01T20:09:48Z
dc.date.available2010-06-01T20:09:48Z
dc.date.issued1999-12en_US
dc.identifier.citationDENVER, ROBERT J. (1999). "Evolution of the Corticotropin-releasing Hormone Signaling System and Its Role in Stress-induced Phenotypic Plasticity." Annals of the New York Academy of Sciences 897(1 NEUROPEPTIDES: STRUCTURE AND FUNCTION IN BIOLOGY AND BEHAVIOR ): 46-53. <http://hdl.handle.net/2027.42/73287>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73287
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10676434&dopt=citationen_US
dc.description.abstractDeveloping animals respond in variation in their habitats by altering their rules of development and/or their morphologies (i.e., they exhibit phenotypic plasticity). In vertebrates, one mechanism by which plasticity is expressed is through activation of the neuroendocrine system, which transduces environmental information into a physiological response. Recent findings of ours with amphibians and of others with mammals show that the primary vertebrate stress neuropeptide, corticotropin-releasing hormone (CRH), is essential for adaptive developmental responses to environmental stress. For instance, CRH-dependent mechanisms cause accelerated metamorphosis in response to pond-drying in some amphibian species, and intrauterine fetal stress syndromes in humans precipitate preterm birth. CRH may be a phylogenetically ancient developmental signaling molecule that allows developing organisms to escape deleterious changes in their larval/fetal habitat. The response to CRH is mediated by at least two different receptor subtypes and may also be modulated by a secreted binding protein.en_US
dc.format.extent170730 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1999 New York Academy of Sciencesen_US
dc.titleEvolution of the Corticotropin-releasing Hormone Signaling System and Its Role in Stress-induced Phenotypic Plasticityen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biology, the University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid10676434en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73287/1/j.1749-6632.1999.tb07877.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1999.tb07877.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceGibson, G. & D.S. Hogness. 1996. Effect of polymorphism in the Drosophila regulatory gene Ultrabithorax on homeotic stability. Science 271: 200 – 203.en_US
dc.identifier.citedreferenceStearns, S.C. 1989. The evolutionary significance of phenotypic plasticity. BioScience 39: 436 – 445.en_US
dc.identifier.citedreferenceNewman, R.A. 1992. Adaptive plasticity in amphibian metamorphosis. Biosciences 42: 671 – 678.en_US
dc.identifier.citedreferenceWest-Eberhard, M.J. 1989. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Systematics 20: 249 – 278.en_US
dc.identifier.citedreferenceDenver, R.J. 1997. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 37: 172 – 184.en_US
dc.identifier.citedreferenceGudernatsch, J.F. 1912. Feeding experiments on tadpoles. 1. The influence of specific organs given as food on growth and differentiation. A contribution to the knowledge of organs with internal secretion. Wilhelm Roux Arch. Entwicklungsmech. Organismen 35: 457 – 483.en_US
dc.identifier.citedreferenceGalton, V.A. 1992. The role of thyroid hormone in amphibian metamorphosis. Trends Endocrinol. Metab. 3: 96 – 100.en_US
dc.identifier.citedreferenceKikuyama, S., K. Kawamura, S. Tanaka & K. Yamamoto. 1993. Aspects of amphibian metamorphosis: hormonal control. Int. Rev. Cytol. 145: 105 – 148.en_US
dc.identifier.citedreference9 Denver, R.J. 1996. Neuroendocrine control of amphibian metamorphosis. In Metamorphosis: Post-Embryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. J. R. Tata, L. I. Gilbert & E. Frieden, Eds.: 433-464. Academic Press. San Diego, CA.en_US
dc.identifier.citedreference10 Licht, P. & R.J. Denver. 1990. Regulation of thyrotropin secretion. In Progress in Comparative Endocrinology. A. Epple, C.G. Scanes & M.H. Stetson, Eds.: 427-432. Wiley-Liss. New York.en_US
dc.identifier.citedreferenceDenver, R.J. & P. Licht. 1989 Neuropeptide stimulation of thyrotropin secretion in the larval bullfrog: evidence for a common neuroregulator of thyroid and interrenal activity during metamorphosis. J. Exp. Zool. 252: 101 – 104.en_US
dc.identifier.citedreferenceJacobs, G.F.M., R.P.A. Michielsen & E.R. Kuhn. 1988. Thyroxine and triiodothyronine in plasma and thyroids of the neotenic and metamorphosed axolotl Ambystoma mexicanum: Influence of TRH injections. Gen. Comp. Endocrinol. 70: 145 – 151.en_US
dc.identifier.citedreferenceTurnbull, A.V. & C. Rivier. 1997. Corticotropin-releasing factor (CRF) and endocrine responses to stress: CRF receptors, binding protein and related peptides. Proc. Soc. Exp. Biol. Med. 215: 1 – 10.en_US
dc.identifier.citedreferenceTonon, M. C., P. Cuet, M. Lamacz, J. Jegou, J. Cote, L. Goteux, N. Ling, G. Pelleier & H. Vaudry. 1986. Comparative effects of corticotropin-releasing factor, arginine vasopressin, and related neuropeptides on the secretion of ACTH and Α-MSH by frog anterior pituitary cells and neurointermediate lobes in vitro. Gen. Comp. Endocrinol. 61: 438 – 445.en_US
dc.identifier.citedreferenceVale, W., J. Vaughan & M. Perrin. 1997. Corticotropin-releasing factor (CRF) family of ligands and their receptors. Endocrinologist 7: S3 – S9 ( Suppl. ).en_US
dc.identifier.citedreference16 Lederis, K., J.N. Fryer, Y. Okawara, C. Schronrock & D. Richter. 1994. Corticotropin-releasing factors acting on the fish pituitary: experimental and molecular analysis. In Fish Physiology, Molecular Endocrinology. N.M. Sherwood & C.L. Hew, Eds.: 67-100. Academic Press. San Diego, CA.en_US
dc.identifier.citedreferenceMontecucchi, P.C. & A. Henschen. 1981. Amino acid composition and sequence analysis of sauvagine, a new active peptide from the skin of Phyllomedusa sauvagei. Int. J. Pept. Protein Res. 18: 113 – 120.en_US
dc.identifier.citedreferenceVaughan, J., C. Donaldson, J. Bittencourt, M.H. Perrin, K. Lewis, S. Sutton, R. Chan, A.V. Turnbull, D. Lovejoy, C. Rivier, J. Rivier, P.E. Sawchenko & W. Vale. 1995. Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature 378: 287 – 292.en_US
dc.identifier.citedreferenceDenver, R.J. 1988. Several hypothalamic peptides stimulate in vitro thyrotropin secretion by pituitaries of anuran amphibians. Gen. Comp. Endocrinol. 72: 383 – 393.en_US
dc.identifier.citedreferenceDenver, R.J. & P. Licht. 1989. Neuropeptides influencing pituitary hormone secretion in hatchling turtles. J. Exp. Zool. 251: 306 – 315.en_US
dc.identifier.citedreferenceGancedo, B., I. Corpas, A.L. Alonso-Gomez, M.J. Delgado, G. Morreale De Escobar & M. Alonso-Bedate. 1992. Corticotropin-releasing factor stimulates metamorphosis and increases thyroid hormone concentration in prometamorphic Rana perezi larvae. Gen. Comp. Endocrinol. 87: 6 – 13.en_US
dc.identifier.citedreferenceDenver, R.J. 1993. Acceleration of anuran amphibian metamorphosis by corticotropin-releasing hormone-like peptides. Gen. Comp. Endocrinol. 91: 38 – 51.en_US
dc.identifier.citedreferenceDenver, R.J. 1997. Environmental stress as a developmental cue: corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm. Behav. 31: 169 – 179.en_US
dc.identifier.citedreferenceMeeuwis, R., R. Michielsen, E. Decuypere & E.R. Kuhn. 1989. Thyrotropic activity of the ovine corticotropin-releasing factor in the chick embryo. Gen. Comp. Endocrinol. 76: 357 – 363.en_US
dc.identifier.citedreferenceKuhn, E.R., K.L. Geris, S. Van Der Geyten, K.A. Mol & V.M. Darras. 1998. Inhibition and activation of thethyroidal axis by the adrenal axis in vertebrates. Comp. Biochem. Physiol. A 120: 169 – 174.en_US
dc.identifier.citedreferenceJacobs, G.F.M. & E.R. Kuhn. 1992. Thyroid hormone feedback regulation of the secretion of bioactive thyrotropin in the frog. Gen. Comp. Endocrinol. 88: 415 – 423.en_US
dc.identifier.citedreferenceGeris, K.L., S.P. Kotanen, L.R. Berghman, E.R. Kuhn & V.M. Darras. 1996. Evidence of a thyrotropin-releasing activity of ovine corticotropin-releasing factor in the domestic fowl ( Gallus domesticus ). Gen. Comp. Endocrinol. 104: 139 – 146.en_US
dc.identifier.citedreferenceLarsen, D.A., P. Swanson, J.T. Dickey, J. Rivier & W.W. Dickhoff. 1998. In vitro thyrotropin-releasing activity of corticotropin-releasing hormone-family peptides in coho salmon, Oncorhynchus kisutch. Gen. Comp. Endocrinol. 109: 276 – 285.en_US
dc.identifier.citedreferenceDautzenberg, F.M., K. Dietrich, M.R. Palchaudhuri & J. Spiess. 1997. Identification of two corticotropin-releasing factor receptors from Xenopus laevis with high ligand selectivity: unusual pharmacology of the type 1 receptor. J. Neurochem. 69: 1640 – 1649.en_US
dc.identifier.citedreferenceBehan, D.P. De Souza, E.B. Potter, E. Sawchenko, P. Lowry, P.J. & W.W. Vale. 1996. Modulatory actions of corticotropin-releasing factor-binding protein. Ann. N.Y. Acad. Sci. 780: 81 – 95.en_US
dc.identifier.citedreferenceBrown, D.D., Z. Wang, J.D. Furlow, A. Kanamori, R.A. Schwartzman, B.F. Remo & A. Pinder. 1996. The thyroid hormone-induced tail resorption program during Xenopus laevis metamorphosis. Proc. Natl. Acad. Sci. USA 93: 1924 – 1929.en_US
dc.identifier.citedreferenceDenver, R.J., N. Mirhadi & M. Phillips. 1998. Adaptive plasticity in amphibian metamorphosis: response of Scaphiopus hammondii tadpoles to habitat desiccation. Ecology 79: 1859 – 1872.en_US
dc.identifier.citedreferenceDenver, R.J. 1998. Hormonal correlates of environmentally induced metamorphosis in the Western spadefoot toad, Scaphiopus hammondii. Gen. Comp. Endocrinol. 110: 326 – 336.en_US
dc.identifier.citedreferenceSmith, R. 1998. Alterations in the hypothalamic pituitary adrenal axis during pregnancy and the placental clock that determines the length of parturition. J. Reprod. Immunol. 39: 215 – 220.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.