Show simple item record

Co-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitro

dc.contributor.authorFowler, Christabel E.en_US
dc.contributor.authorBeniash, Eliaen_US
dc.contributor.authorYamakoshi, Yasuoen_US
dc.contributor.authorSimmer, James P.en_US
dc.contributor.authorMargolis, Henry C.en_US
dc.date.accessioned2010-06-01T20:13:15Z
dc.date.available2010-06-01T20:13:15Z
dc.date.issued2006-05en_US
dc.identifier.citationFowler, Christabel E.; Beniash, Elia; Yamakoshi, Yasuo; Simmer, James P.; Margolis, Henry C. (2006). "Co-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitro ." European Journal of Oral Sciences 114(s1): 297-303. <http://hdl.handle.net/2027.42/73342>en_US
dc.identifier.issn0909-8836en_US
dc.identifier.issn1600-0722en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73342
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16674702&dopt=citationen_US
dc.format.extent269192 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2006 Eur J Oral Scien_US
dc.subject.otherAmelogenesisen_US
dc.subject.otherAmelogeninen_US
dc.subject.otherMineralizationen_US
dc.subject.otherSelf-assemblyen_US
dc.subject.otherSilicaen_US
dc.titleCo-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitroen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelOtolaryngologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Department of Biologic and Materials Science, School of Dentistry, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherGlaxoSmith Kline, Weybridge, Surrey, UK;en_US
dc.contributor.affiliationotherDepartment of Biomineralization, The Forsyth Institute, Boston, MA, USA;en_US
dc.identifier.pmid16674702en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73342/1/j.1600-0722.2006.00288.x.pdf
dc.identifier.doi10.1111/j.1600-0722.2006.00288.xen_US
dc.identifier.sourceEuropean Journal of Oral Sciencesen_US
dc.identifier.citedreferenceBirchall JD. The importance of the study of biominerals to materials technology. In: Mann S, Webb J, Williams RJP, eds. Biomineralization: chemical and biochemical perspectives. New York: VCH Publishers, 1989; 491 – 509.en_US
dc.identifier.citedreferenceAvery JK, Visser RL, Knapp DE. The pattern of the mineralization of enamel. J Dent Res 1961; 40: 1004 – 1019.en_US
dc.identifier.citedreferenceBoskey AL. Matrix proteins and mineralization: an overview. Connect Tissue Res 1996; 35: 357 – 363.en_US
dc.identifier.citedreferenceGibson CW, Yuan ZA, Hall B, Longenecker G, Chen E, Thyagarajan T, Sreenath T, Wright JT, Decker S, Piddington R, Harrison G, Kulkarni AB. Amelogenin-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem 2001; 276: 31871 – 31875.en_US
dc.identifier.citedreferenceLagerstrom M, Dahl N, Nakahori Y, Nakagome Y, Backman B, Landegren U, Pettersson U. A deletion in the amelogenin gene (AMG) causes X-linked amelogenesis imperfecta (AIH1). Genomics 1991; 10: 971 – 975.en_US
dc.identifier.citedreferenceAldred MJ, Crawford PJ, Roberts E, Thomas NS. Identification of a nonsense mutation in the amelogenin gene (AMELX) in a family with X-linked amelogenesis imperfecta (AIH1). Hum Genet 1992; 90: 413 – 416.en_US
dc.identifier.citedreferenceLyngstadaas SP, Risnes S, Sproat BS, Thrane PS, Prydz HP. A synthetic, chemically modified ribozyme eliminates amelogenin, the major translation product in developing mouse enamel in vivo. EMBO J 1995; 14: 5224 – 5229.en_US
dc.identifier.citedreferenceTan J, Leung W, Moradian-Oldak J, Zeichner-David M, Fincham AG. Quantitative analysis of amelogenin solubility. J Dent Res 1998; 77: 1388 – 1396.en_US
dc.identifier.citedreferenceRobinson C, Fuchs P, Weatherall JA. The appearance of developing rat incisor enamel using a freeze fracturing technique. J Crystal Growth 1981; 53: 160 – 165.en_US
dc.identifier.citedreferenceNagasaka S. Electron microscopy of biochemically characterized, newly secreted tooth enamel proteins. Arch Oral Biol 1994; 39: 105 – 110.en_US
dc.identifier.citedreferenceMoradian-Oldak J, Simmer JP, Lau EC, Sarte PE, Slavkin HC, Fincham AG. Detection of monodisperse aggregates of a recombinant amelogenin by dynamic light scattering. Biopolymers 1994; 34: 1339 – 1347.en_US
dc.identifier.citedreferenceMoradian-Oldak J, Leung W, Fincham AG. Temperature and pH-dependent supramolecular self-assembly of amelogenin molecules: a dynamic light-scattering analysis. J Struct Biol 1998; 122: 320 – 327.en_US
dc.identifier.citedreferenceFincham AG, Moradian-Oldak J, Simmer JP, Sarte P, Lau EC, Diekwisch T, Slavkin HC. Self-assembly of a recombinant amelogenin protein generates supramolecular structures. J Struct Biol 1994; 112: 103 – 109.en_US
dc.identifier.citedreferenceFincham AG, Moradian-Oldak J, Diekwisch TG, Lyaruu DM, Wright JT, Bringas P Jr, Slavkin HC. Evidence for amelogenin ‘nanospheres’ as functional components of secretory-stage enamel matrix. J Struct Biol 1995; 115: 50 – 59.en_US
dc.identifier.citedreferenceMoradian-Oldak J, Paine ML, Lei YP, Fincham AG, Snead ML. Self-assembly properties of recombinant engineered amelogenin proteins analyzed by dynamic light scattering and atomic force microscopy. J Struct Biol 2000; 131: 27 – 37.en_US
dc.identifier.citedreferenceBeniash E, Simmer JP, Margolis HC. The effect of recombinant mouse amelogenins on the formation and organization of hydroxyapatite crystals in vitro. J Struct Biol 2005; 149: 182 – 190.en_US
dc.identifier.citedreferencePaine ML, Zhu DH, Luo W, Bringas P Jr, Goldberg M, White SN, Lei YP, Sarikaya M, Fong HK, Snead ML. Enamel biomineralization defects result from alterations to amelogenin self-assembly. J Struct Biol 2000; 132: 191 – 200.en_US
dc.identifier.citedreferenceDunglas C, Septier D, Paine ML, Zhu DH, Snead ML, Goldberg M. Ultrastructure of forming enamel in mouse bearing a transgene that disrupts the amelogenin self-assembly domains. Calcif Tissue Int 2002; 71: 155 – 166.en_US
dc.identifier.citedreferenceWeiner S, Addadi L. Design strategies in mineralized biological materials. J Mater Chem 1997; 7: 689 – 702.en_US
dc.identifier.citedreferenceTakagi T, Suzuki M, Baba T, Minegishi K, Sasaki S. Complete amino acid sequence of amelogenin in developing bovine enamel. Biochem Biophys Res Commun 1984; 121: 592 – 597.en_US
dc.identifier.citedreferenceDavis ME. Ordered porous materials for emerging applications. Nature 2002; 417: 813 – 821.en_US
dc.identifier.citedreferenceHeuer AH, Fink DJ, Laraia VJ, Arias JL, Calvert PD, Kendall K, Messing GL, Blackwell J, Rieke PC, Thompson DH. Innovative materials processing strategies: a biomimetic approach. Science 1992; 255: 1098 – 1105.en_US
dc.identifier.citedreferenceWong KKW, Douglas T, Gider S, Awschalom DD, Mann S. Biomimetic synthesis and characterization of magnetic proteins (magnetoferritin). Chem Mater 1998; 10: 279 – 285.en_US
dc.identifier.citedreferenceArchibald DD, Mann S. Template mineralization of self-assembled anisotropic lipid microstructures. Nature 1993; 364: 430 – 433.en_US
dc.identifier.citedreferenceDavis SA, Burkett SL, Mendelson NH, Mann S. Bacterial templating of ordered macrostructures in silica and silica – surfactant mesophases. Nature 1997; 385: 420 – 423.en_US
dc.identifier.citedreferenceMayes E, Vollrath F, Mann S. Fabrication of magnetic spider silk and other silk-fiber composites using inorganic nanoparticles. Adv Mater 1998; 10: 801 – 805.en_US
dc.identifier.citedreferenceShenton W, Douglas T, Young M, Stubbs G, Mann S. Inorganic-organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 1999; 11: 253 – 256.en_US
dc.identifier.citedreferenceFowler CE, Shenton W, Stubbs G, Mann S. Tobacco mosaic virus liquid crystals as templates for the interior design of silica mesophases and nanoparticles. Adv Mater 2001; 13: 1266 – 1269.en_US
dc.identifier.citedreferenceSimmer JP, Lau EC, Hu CC, Aoba T, Lacey M, Nelson D, Zeichner-David M, Snead ML, Slavkin HC, Fincham AG. Isolation and characterization of a mouse amelogenin expressed in Escherichia coli. Calcif Tissue Int 1994; 54: 312 – 319.en_US
dc.identifier.citedreferenceRyu OH, Fincham AG, Hu CC, Zhang C, Qian Q, Bartlett JD, Simmer JP. Characterization of recombinant pig enamelysin activity and cleavage of recombinant pig and mouse amelogenins. J Dent Res 1999; 78: 743 – 750.en_US
dc.identifier.citedreferenceYamakoshi Y, Hu JC-C, Ryu O, Tanabe T, Oida S, Fukae M, Simmer JP. A comprehensive strategy for purifying pig enamel proteins. In: Kobayshi I, Ozawa H, eds. Biomineralization (BIOM2001) formation, diversity, evolution and application. Kanagawa: Tokai University Press, 2004; 326 – 332.en_US
dc.identifier.citedreferenceDu C, Falini G, Fermanii S, Abbott C, Moradian-Oldak J. Supramolecular assembly of amelogenin nanospheres into birefringent microribbons. Science 2005; 307: 1450 – 1454.en_US
dc.identifier.citedreferenceAichmayer B, Margolis HC, Sigel R, Yamakoshi Y, Simmer JP, Fratzl P. The onset of amelogenin nanosphere aggregation studied by small-angle x-ray scattering and dynamic light scattering. J Struct Biol 2005; 151: 239 – 249.en_US
dc.identifier.citedreferenceWen HB, Moradian-Oldak J, Leung W, Bringas P Jr, Fincham AG. Microstructures of an amelogenin gel matrix. J Struct Biol 1999; 126: 42 – 51.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.