Show simple item record

Proteomic Approaches within the NCI Early Detection Research Network for the Discovery and Identification of Cancer Biomarkers

dc.contributor.authorVerma, Mukeshen_US
dc.contributor.authorWright, George L.en_US
dc.contributor.authorHanash, Samir M.en_US
dc.contributor.authorGopal-Srivastava, Rashmien_US
dc.contributor.authorSrivastava, Sudhiren_US
dc.date.accessioned2010-06-01T20:13:56Z
dc.date.available2010-06-01T20:13:56Z
dc.date.issued2001-09en_US
dc.identifier.citationVERMA, MUKESH; WRIGHT, GEORGE L.; HANASH, SAMIR M.; GOPAL-SRIVASTAVA, RASHMI; SRIVASTAVA, SUDHIR (2001). "Proteomic Approaches within the NCI Early Detection Research Network for the Discovery and Identification of Cancer Biomarkers." Annals of the New York Academy of Sciences 945(1 CIRCULATING NUCLEIC ACIDS IN PLASMA OR SERUM II ): 103-115. <http://hdl.handle.net/2027.42/73353>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73353
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11708463&dopt=citationen_US
dc.description.abstractIn the postgenome era, proteomics provides a powerful approach for the analysis of normal and transformed cell functions, for the identification of disease-specific targets, and for uncovering novel endpoints for the evaluation of chemoprevention agents and drug toxicity. Unfortunately, the genomic information that has greatly expounded the genetic basis of cancer does not allow an accurate prediction of what is actually occurring at the protein level within a given cell type at any given time. The gene expression program of a given cell is affected by numerous factors in the in vivo environment resulting from tissue complexity and organ system orchestration, with cells acting in concert with each other and responding to changes in their microenvironment. Repositories of genomic information can be considered master “inventory lists” of genes and their maps, which need to be supplemented with protein-derived information. The National Cancer Institute's Early Detection Research Network is employing proteomics, or “protein walking”, in the discovery and evaluation of biomarkers for cancer detection and for the identification of high-risk subjects. Armed with microdissection techniques, including the use of Laser Capture Microdissection (LCM) to procure pure populations of cells directly from human tissue, the Network is facilitating the development of technologies that can overcome the problem of tissue heterogeneity and address the need to identify markers in easily accessible biological fluids. Proteomic approaches complement plasma-based assays of circulating DNA for cancer detection and risk assessment. LCM, coupled with downstream proteomics applications, such as two-dimensional polyacrylamide gel electrophoresis and SELDI (surface enhanced laser desorption ionization) separation followed by mass spectrometry (MS) analysis, may greatly facilitate the characterization and identification of protein expression changes that track normal and disease phenotypes. We highlight recent work from Network investigators to demonstrate the potential of proteomics to identify proteins present in cancer tissues and body fluids that are relevant for cancer screening.en_US
dc.format.extent3354572 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 by the New York Academy of Sciencesen_US
dc.subject.otherBiomarkersen_US
dc.subject.otherEDRNen_US
dc.subject.otherLCMen_US
dc.subject.otherMALDIen_US
dc.subject.otherProteinChipen_US
dc.subject.otherProteomicsen_US
dc.subject.otherSELDIen_US
dc.titleProteomic Approaches within the NCI Early Detection Research Network for the Discovery and Identification of Cancer Biomarkersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherCancer Biomarkers Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, Maryland, USAen_US
dc.contributor.affiliationotherDepartment of Microbiology and Molecular Cell Biology and Virginia Prostate Center, Eastern Virginia Medical School, Norfolk, Virginia, USAen_US
dc.contributor.affiliationotherDivision of Extramural Activities, National Cancer Institute, Bethesda, Maryland, USAen_US
dc.identifier.pmid11708463en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73353/1/j.1749-6632.2001.tb03870.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2001.tb03870.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceCollins, F.S. & V.A. McKusick, 2001. Implications of the human genome project for medical science. JAMA 285: 540 – 544.en_US
dc.identifier.citedreferenceVenter, J.C., M.D. Adams, E.W. Myers et al. 2001. The sequence of the human genome. Science 291: 1304 – 1351.en_US
dc.identifier.citedreferenceWasinger, V.C., S.J. Cordwell, A. Cerpa-Poljak et al. 1995. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium. Electrophoresis 16: 1090 – 1094.en_US
dc.identifier.citedreferenceJungblut, P.R., U. Zimny-Arndt, E. Zeindl-Eberhart et al. 1999. Proteomics in human disease: cancer, heart, and infectious diseases. Electrophoresis 20: 2100 – 2110.en_US
dc.identifier.citedreferenceHerbert, B. 1999. Advances in protein solubilization for two-dimensional electrophoresis. Electrophoresis 20: 660 – 663.en_US
dc.identifier.citedreferenceGodovac-Zimmermann, J., V. Soskic, S. Poznanovic et al. 1999. Functional proteomics of signal transduction by membrane receptors. Electrophoresis 20: 952 – 961.en_US
dc.identifier.citedreferenceHatzimanikatis, V., L.H. Choe & K.H. Lee. 1999. Proteomics: theoretical and experimental considerations. Biotechnol. Prog. 5: 312 – 318.en_US
dc.identifier.citedreferenceFabris, D., M. Vestling, M. Cordero et al. 1995. Sequencing electroblotted proteins by tandem mass spectrometry. Rapid Commun. Mass Spectrom. 9: 1051 – 1055.en_US
dc.identifier.citedreferenceYates, J.R., J.K. Eng & A.L. McCormack. 1995. Mining genomes: correlating tandem mass spectra of modified and unmodified peptides to sequences in nucleotide databases. Anal. Chem. 67: 3202 – 3210.en_US
dc.identifier.citedreferenceFeras, E.R., D.J. Stephens, C.E. Walters et al. 1999. The role of cholesterol in the biosynthesis of beta-amyloid. Neuroreport 10: 1699 – 1705.en_US
dc.identifier.citedreferenceHumphery-Smith, I., S.J. Cordwell & W.P. Blackstock. 1997. Proteome research: complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 18: 1217 – 1242.en_US
dc.identifier.citedreferenceDove, A. 1999. Proteomics: translating genomics into products ? Nat. Biotechnol. 17: 233 – 236.en_US
dc.identifier.citedreferenceAicher, L., D. Wahl, A. Arce et al. 1998. New insights into cyclosporine A nephrotoxicity by proteome analysis. Electrophoresis 19: 1998 – 2003.en_US
dc.identifier.citedreferenceHutchens, T.W. & T.T. Yip, 1993. New desorption strategies for the mass analysis of macromolecules. Rapid Commun. Mass Spectrom. 7: 576 – 580.en_US
dc.identifier.citedreferenceMerchant, M. & S.R. Weinberger, 2000. Recent advancements in surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Electrophoresis 21: 1164 – 1177.en_US
dc.identifier.citedreferenceFung, E.T., G.L. Wright, Jr. & E.A. Dalmasso. 2000. Proteomic strategies for biomarker identification: progress and challenges. Curr. Opin. Mol. Ther. 2: 643 – 650.en_US
dc.identifier.citedreferenceYip, T.T., J. Van de Water, M.E. Gerswin et al. 1996. Cryptic antigenic determinants on the extracellular pyruvate dehydrogenase complex/mimeotope found in primary biliary cirrhosis. J. Biol. Chem. 271: 32825 – 32833.en_US
dc.identifier.citedreferenceBanks, R.E., M.J. Dunn, M.A. Forbes et al. 1999. The potential use of laser capture microdissection to selectively obtain distinct populations of cells for proteomic analysis-preliminary findings. Electrophoresis 20: 689 – 700.en_US
dc.identifier.citedreferenceWright, G.L., Jr., L.H. Cazares, S.M. Leung et al. 1999. ProteinChip surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis. 2: 264 – 276.en_US
dc.identifier.citedreferenceOrnstein, D.K., C. Englert, J.W. Gillespie et al. 2000. Characterization of intracellular prostate-specific antigen from laser capture microdissected benign and malignant prostatic epithelium. Clin. Cancer Res. 6: 353 – 356.en_US
dc.identifier.citedreferencePaweletz, C.P., J.W. Gillespie, D.K. Ornstein et al. 2000. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip. Drug Dev. Res. 49: 34 – 42.en_US
dc.identifier.citedreference22 Vlahou, A., P.F. Schellhammer, S. Mendrinos et al. 2001. Development of a novel proteomic approach for the detection of transitional cell carcinoma of the bladder in urine. Am. J. Pathol. In press.en_US
dc.identifier.citedreferenceXiao, Z., X. Jiang, M.L. Beckett et al. 2000. Generation of a baculovirus recombinant prostate-specific membrane antigen and its use in the development of a novel protein biochip quantitative immunoassay. Protein Expression Purif. 19: 12 – 21.en_US
dc.identifier.citedreferenceLiszeski, K. 1999. New twists in gene therapy. Genet. Eng. News 19: 8 – 34.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.