Show simple item record

Expanded HOXA13 polyalanine tracts in a monotreme

dc.contributor.authorLehoczky, Jessica A.en_US
dc.contributor.authorInnis, Jeffrey W.en_US
dc.date.accessioned2010-06-01T20:14:10Z
dc.date.available2010-06-01T20:14:10Z
dc.date.issued2008-07en_US
dc.identifier.citationLehoczky, Jessica A.; Innis, Jeffrey W. (2008). "Expanded HOXA13 polyalanine tracts in a monotreme." Evolution & Development 10(4 ): 433-438. <http://hdl.handle.net/2027.42/73357>en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73357
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18638320&dopt=citationen_US
dc.description.abstractThe N-terminal region of human HOXA13 has seven discrete polyalanine tracts. Our previous analysis of these tracts in multiple major vertebrate clades suggested that three are mammal-specific. We now report the N-terminal HOXA13 repetitive tract structures in the monotreme Tachyglossus aculeatus (echidna). Contrary to our expectations, echidna HOXA13 possesses a unique set of polyalanine tracts and an unprecedented polyglycine tract. The data support the conclusion that the emergence of expanded polyalanine tracts in proteins occurred very early in the stem lineage that gave rise to mammals, between 162 and 315 Ma.en_US
dc.format.extent244196 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Inc.en_US
dc.titleExpanded HOXA13 polyalanine tracts in a monotremeen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USAen_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan, Ann Arbor, MI 48109-5718, USAen_US
dc.contributor.affiliationotherDepartment of Genetics, Harvard Medical School, Boston, MA 02115, USAen_US
dc.identifier.pmid18638320en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73357/1/j.1525-142X.2008.00254.x.pdf
dc.identifier.doi10.1111/j.1525-142X.2008.00254.xen_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceBenton, M. J., and Donoghue, P. C. ( 2007 ). Paleontological evidence to date the tree of life. Mol. Biol. Evol. 24: 26 – 53.en_US
dc.identifier.citedreferenceBrown, L. Y., and Brown, S. A. ( 2004 ). Alanine tracts: the expanding story of human illness and trinucleotide repeats. Trends Genet. 20: 51 – 58.en_US
dc.identifier.citedreferenceFromental-Ramain, C., Warot, X., Messadecq, N., LeMeur, M., Dolle, P., and Chambon, P. ( 1996 ). Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development (Cambridge, UK) 122: 2997.en_US
dc.identifier.citedreferenceGoodman, F. R., et al. ( 2000 ). Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am. J. Hum. Genet. 67: 197.en_US
dc.identifier.citedreferenceGrutzner, F., and Graves, J. A. ( 2004 ). A platypus' eye view of the mammalian genome. Curr. Opin. Genet. Dev. 14: 642 – 649.en_US
dc.identifier.citedreferenceHan, K., and Manley, J. L. ( 1993 ). Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7: 491 – 503.en_US
dc.identifier.citedreferenceHedges, S. B., and Poling, L. L. ( 1999 ). A molecular phylogeny of reptiles. Science 283: 998 – 1001.en_US
dc.identifier.citedreferenceInnis, J. W., et al. ( 2004 ). Polyalanine expansion in HOXA13: three new affected families and the molecular consequences in a mouse model. Hum. Mol. Genet. 13: 2841 – 2851.en_US
dc.identifier.citedreferenceKarlin, S., Brocchieri, L., Bergman, A., Mrazek, J., and Gentles, A. J. ( 2002 ). Amino acid runs in eukaryotic proteomes and disease associations. Proc. Natl. Acad. Sci. USA 99: 333 – 338.en_US
dc.identifier.citedreferenceLavoie, H., et al. ( 2003 ). Polymorphism, shared functions and convergent evolution of genes with sequences coding for polyalanine domains. Hum. Mol. Genet. 12: 2967 – 2979.en_US
dc.identifier.citedreferenceMcGinnis, W., and Krumlauf, R. ( 1992 ). Homeobox genes and axial patterning. Cell 68: 283.en_US
dc.identifier.citedreferenceMortlock, D. P., and Innis, J. W. ( 1997 ). Mutation of HOXA13 in hand-foot-genital syndrome. Nat. Genet. 15: 179.en_US
dc.identifier.citedreferenceMortlock, D. P., Post, L. C., and Innis, J. W. ( 1996 ). The molecular basis of hypodactyly (Hd): a deletion in Hoxa 13 leads to arrest of digital arch formation. Nat. Genet. 13: 284.en_US
dc.identifier.citedreferenceMortlock, D. P., Sateesh, P., and Innis, J. W. ( 2000 ). Evolution of N-terminal sequences of the vertebrate HOXA13 protein. Mamm. Genome 11: 151 – 158.en_US
dc.identifier.citedreferencePodlasek, C. A., Clemens, J. Q., and Bushman, W. ( 1999 ). Hoxa-13 gene mutation results in abnormal seminal vesicle and prostate development. J. Urol. 161: 1655 – 1661.en_US
dc.identifier.citedreferenceRadinsky, L. B. ( 1987 ). The Evolution of Vertebrate Design. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceScott, V., Morgan, E. A., and Stadler, H. S. ( 2005 ). Genitourinary functions of Hoxa13 and Hoxd13. J. Biochem. (Tokyo) 137: 671 – 676.en_US
dc.identifier.citedreferenceStadler, H. S., Higgins, K. M., and Capecchi, M. R. ( 2001 ). Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development (Cambridge, UK) 128: 4177.en_US
dc.identifier.citedreferenceVeraksa, A., Del Campo, M., and McGinnis, W. ( 2000 ). Developmental patterning genes and their conserved functions: from model organisms to humans. Mol. Genet. Metabol. 69: 85.en_US
dc.identifier.citedreferenceWarot, X., Fromental-Ramain, C., Fraulob, V., Chambon, P., and Dolle, P. ( 1997 ). Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development (Cambridge, UK) 124: 4781.en_US
dc.identifier.citedreferenceZardoya, R., and Meyer, A. ( 1998 ). Complete mitochondrial genome suggests diapsid affinities of turtles. Proc. Natl. Acad. Sci. USA 95: 14226 – 14231.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.