Show simple item record

Membrane Traffic and Muscle: Lessons from Human Disease

dc.contributor.authorDowling, James J.en_US
dc.contributor.authorGibbs, Elizabeth M.en_US
dc.contributor.authorFeldman, Eva L.en_US
dc.date.accessioned2010-06-01T20:14:55Z
dc.date.available2010-06-01T20:14:55Z
dc.date.issued2008-07en_US
dc.identifier.citationDowling, James J.; Gibbs, Elizabeth M.; Feldman, Eva L. (2008). "Membrane Traffic and Muscle: Lessons from Human Disease." Traffic 9(7): 1035-1043. <http://hdl.handle.net/2027.42/73369>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73369
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18266915&dopt=citationen_US
dc.format.extent335857 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Ltden_US
dc.subject.otherBIN1en_US
dc.subject.otherCaveolin-3en_US
dc.subject.otherDynamin 2en_US
dc.subject.otherDysferlinen_US
dc.subject.otherMembrane Trafficen_US
dc.subject.otherMyotubularinen_US
dc.titleMembrane Traffic and Muscle: Lessons from Human Diseaseen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan Medical Center, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Neuroscience, University of Michigan Medical Center, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Neurology, University of Michigan Medical Center, Ann Arbor, MI 48109, USAen_US
dc.identifier.pmid18266915en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73369/1/j.1600-0854.2008.00716.x.pdf
dc.identifier.doi10.1111/j.1600-0854.2008.00716.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceTowler MC, Kaufman SJ, Brodsky FM. Membrane traffic in skeletal muscle. Traffic 2004; 5: 129 – 139.en_US
dc.identifier.citedreferenceRalston E. Changes in architecture of the Golgi complex and other subcellular organelles during myogenesis. J Cell Biol 1993; 120: 399 – 409.en_US
dc.identifier.citedreferenceEimer S, Gottschalk A, Hengartner M, Horvitz HR, Richmond J, Schafer WR, Bessereau JL. Regulation of nicotinic receptor trafficking by the transmembrane Golgi protein UNC-50. EMBO J 2007; 26: 4313 – 4323.en_US
dc.identifier.citedreferenceKrolenko SA, Lucy JA. Vacuolation in T-tubules as a model for tubular-vesicular transformations in biomembrane systems. Cell Biol Int 2002; 26: 893 – 904.en_US
dc.identifier.citedreferenceGlover L, Brown RH Jr. Dysferlin in membrane trafficking and patch repair. Traffic 2007; 8: 785 – 794.en_US
dc.identifier.citedreferenceNguyen K, Bassez G, Bernard R, Krahn M, Labelle V, Figarella-Branger D, Pouget J, Hammouda el H, Beroud C, Urtizberea A, Eymard B, Leturcq F, Levy N. Dysferlin mutations in LGMD2B, Miyoshi myopathy, and atypical dysferlinopathies. Hum Mutat 2005; 26: 165.en_US
dc.identifier.citedreferenceWoodman SE, Sotgia F, Galbiati F, Minetti C, Lisanti MP. Caveolinopathies: mutations in caveolin-3 cause four distinct autosomal dominant muscle diseases. Neurology 2004; 62: 538 – 543.en_US
dc.identifier.citedreferencePierson CR, Tomczak K, Agrawal P, Moghadaszadeh B, Beggs AH. X-linked myotubular and centronuclear myopathies. J Neuropathol Exp Neurol 2005; 64: 555 – 564.en_US
dc.identifier.citedreferenceBashir R, Britton S, Strachan T, Keers S, Vafiadaki E, Lako M, Richard I, Marchand S, Bourg N, Argov Z, Sadeh M, Mahjneh I, Marconi G, Passos-Bueno MR, Moreira Ede S et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nat Genet 1998; 20: 37 – 42.en_US
dc.identifier.citedreferenceLiu J, Aoki M, Illa I, Wu C, Fardeau M, Angelini C, Serrano C, Urtizberea JA, Hentati F, Hamida MB, Bohlega S, Culper EJ, Amato AA, Bossie K, Oeltjen J et al. Dysferlin, a novel skeletal muscle gene, is mutated in Miyoshi myopathy and limb girdle muscular dystrophy. Nat Genet 1998; 20: 31 – 36.en_US
dc.identifier.citedreferenceWashington NL, Ward S. FER-1 regulates Ca2+ -mediated membrane fusion during C. elegans spermatogenesis. J Cell Sci 2006; 119: 2552 – 2562.en_US
dc.identifier.citedreferenceHan R, Campbell KP. Dysferlin and muscle membrane repair. Curr Opin Cell Biol 2007; 19: 409 – 416.en_US
dc.identifier.citedreferenceDavis DB, Delmonte AJ, Ly CT, McNally EM. Myoferlin, a candidate gene and potential modifier of muscular dystrophy. Hum Mol Genet 2000; 9: 217 – 226.en_US
dc.identifier.citedreferenceBansal D, Miyake K, Vogel SS, Groh S, Chen CC, Williamson R, McNeil PL, Campbell KP. Defective membrane repair in dysferlin-deficient muscular dystrophy. Nature 2003; 423: 168 – 172.en_US
dc.identifier.citedreferenceDavis DB, Doherty KR, Delmonte AJ, McNally EM. Calcium-sensitive phospholipid binding properties of normal and mutant ferlin C2 domains. J Biol Chem 2002; 277: 22883 – 22888.en_US
dc.identifier.citedreferenceDoherty KR, Cave A, Davis DB, Delmonte AJ, Posey A, Earley JU, Hadhazy M, McNally EM. Normal myoblast fusion requires myoferlin. Development 2005; 132: 5565 – 5575.en_US
dc.identifier.citedreferenceSelcen D, Stilling G, Engel AG. The earliest pathologic alterations in dysferlinopathy. Neurology 2001; 56: 1472 – 1481.en_US
dc.identifier.citedreferenceSaito A, Higuchi I, Nakagawa M, Saito M, Hirata K, Suehara M, Yoshida Y, Takahashi T, Aoki M, Osame M. Miyoshi myopathy patients with novel 5’ splicing donor site mutations showed different dysferlin immunostaining at the sarcolemma. Acta Neuropathol 2002; 104: 615 – 620.en_US
dc.identifier.citedreferenceWeiler T, Bashir R, Anderson LV, Davison K, Moss JA, Britton S, Nylen E, Keers S, Vafiadaki E, Greenberg CR, Bushby CR, Wrogemann K. Identical mutation in patients with limb girdle muscular dystrophy type 2B or Miyoshi myopathy suggests a role for modifier gene(s). Hum Mol Genet 1999; 8: 871 – 877.en_US
dc.identifier.citedreferenceAngelini C. Limb-girdle muscular dystrophies: heterogeneity of clinical phenotypes and pathogenetic mechanisms. Acta Myol 2004; 23: 130 – 136.en_US
dc.identifier.citedreferenceParton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol 2007; 8: 185 – 194.en_US
dc.identifier.citedreferenceSong KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 1996; 271: 15160 – 15165.en_US
dc.identifier.citedreferenceParton RG, Way M, Zorzi N, Stang E. Caveolin-3 associates with developing T-tubules during muscle differentiation. J Cell Biol 1997; 136: 137 – 154.en_US
dc.identifier.citedreferenceCarlson BM, Carlson JA, Dedkov EI, McLennan IS. Concentration of caveolin-3 at the neuromuscular junction in young and old rat skeletal muscle fibers. J Histochem Cytochem 2003; 51: 1113 – 1118.en_US
dc.identifier.citedreferenceNixon SJ, Wegner J, Ferguson C, Mery PF, Hancock JF, Currie PD, Key B, Westerfield M, Parton RG. Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Hum Mol Genet 2005; 14: 1727 – 1743.en_US
dc.identifier.citedreferenceHnasko R, Lisanti MP. The biology of caveolae: lessons from caveolin knockout mice and implications for human disease. Mol Interv 2003; 3: 445 – 464.en_US
dc.identifier.citedreferenceGalbiati F, Volonte D, Minetti C, Chu JB, Lisanti MP. Phenotypic behavior of caveolin-3 mutations that cause autosomal dominant limb girdle muscular dystrophy (LGMD-1C). Retention of LGMD-1C caveolin-3 mutants within the golgi complex. J Biol Chem 1999; 274: 25632 – 25641.en_US
dc.identifier.citedreferenceHernandez-Deviez DJ, Martin S, Laval SH, Lo HP, Cooper ST, North KN, Bushby K, Parton RG. Aberrant dysferlin trafficking in cells lacking caveolin or expressing dystrophy mutants of caveolin-3. Hum Mol Genet 2006; 15: 129 – 142.en_US
dc.identifier.citedreferenceBertini E, Biancalana V, Bolino A, Buj Bello A, Clague M, Guicheney P, Jungbluth H, Kress W, Musaro A, Nandurkar H, Pirola L, Romero N, Senderek J, Suter U, Sewry C et al. 118th ENMC International Workshop on Advances in Myotubular Myopathy. 26-28 September 2003, Naarden, The Netherlands. (5th Workshop of the International Consortium on Myotubular Myopathy). Neuromuscul Disord 2004; 14: 387 – 396.en_US
dc.identifier.citedreferencePenisson-Besnier I, Biancalana V, Reynier P, Cossee M, Dubas F. Diagnosis of myotubular myopathy in the oldest known manifesting female carrier: a clinical and genetic study. Neuromuscul Disord 2007; 17: 180 – 185.en_US
dc.identifier.citedreferencede Goede CG, Kelsey A, Kingston H, Tomlin PI, Hughes MI. Muscle biopsy without centrally located nuclei in a male child with mild X-linked myotubular myopathy. Dev Med Child Neurol 2005; 47: 835 – 837.en_US
dc.identifier.citedreferenceJungbluth H, Sewry CA, Buj-Bello A, Kristiansen M, Orstavik KH, Kelsey A, Manzur AY, Mercuri E, Wallgren-Pettersson C, Muntoni F. Early and severe presentation of X-linked myotubular myopathy in a girl with skewed X-inactivation. Neuromuscul Disord 2003; 13: 55 – 59.en_US
dc.identifier.citedreferenceDe Matteis MA, Godi A. PI-loting membrane traffic. Nat Cell Biol 2004; 6: 487 – 492.en_US
dc.identifier.citedreferenceTaylor GS, Maehama T, Dixon JE. Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A 2000; 97: 8910 – 8915.en_US
dc.identifier.citedreferenceLorenzo O, Urbe S, Clague MJ. Systematic analysis of myotubularins: heteromeric interactions, subcellular localisation and endosome related functions. J Cell Sci 2006; 119: 2953 – 2959.en_US
dc.identifier.citedreferenceTsujita K, Itoh T, Ijuin T, Yamamoto A, Shisheva A, Laporte J, Takenawa T. Myotubularin regulates the function of the late endosome through the gram domain-phosphatidylinositol 3,5-bisphosphate interaction. J Biol Chem 2004; 279: 13817 – 13824.en_US
dc.identifier.citedreferenceFili N, Calleja V, Woscholski R, Parker PJ, Larijani B. Compartmental signal modulation: endosomal phosphatidylinositol 3-phosphate controls endosome morphology and selective cargo sorting. Proc Natl Acad Sci U S A 2006; 103: 15473 – 15478.en_US
dc.identifier.citedreferenceLaporte J, Blondeau F, Gansmuller A, Lutz Y, Vonesch JL, Mandel JL. The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles. J Cell Sci 2002; 115: 3105 – 3117.en_US
dc.identifier.citedreferenceClague MJ, Lorenzo O. The myotubularin family of lipid phosphatases. Traffic 2005; 6: 1063 – 1069.en_US
dc.identifier.citedreferenceCoronas S, Ramel D, Pendaries C, Gaits-Iacovoni F, Tronchere H, Payrastre B. PtdIns5P: a little phosphoinositide with big functions? Biochemical Society symposium. 2007; 74: 117 – 128.en_US
dc.identifier.citedreferenceBuj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL. The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 2002; 99: 15060 – 15065.en_US
dc.identifier.citedreferenceZhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS. Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 2007; 104: 17518 – 17523.en_US
dc.identifier.citedreferenceChow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH. Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 2007; 448: 68 – 72.en_US
dc.identifier.citedreferenceBitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P. Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 2005; 37: 1207 – 1209.en_US
dc.identifier.citedreferenceFischer D, Herasse M, Bitoun M, Barragan-Campos HM, Chiras J, Laforet P, Fardeau M, Eymard B, Guicheney P, Romero NB. Characterization of the muscle involvement in dynamin 2-related centronuclear myopathy. Brain 2006; 129: 1463 – 1469.en_US
dc.identifier.citedreferenceBitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, Lubieniecki F, Cances C, Uro-Coste E, Mayer M, Fardeau M, Romero NB, Guicheney P. Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurol 2007; 62: 666 – 670.en_US
dc.identifier.citedreferenceHinshaw JE. Dynamin and its role in membrane fission. Annu Rev Cell Dev Biol 2000; 16: 483 – 519.en_US
dc.identifier.citedreferenceUrrutia R, Henley JR, Cook T, McNiven MA. The dynamins: redundant or distinct functions for an expanding family of related GTPases? Proc Natl Acad Sci U S A 1997; 94: 377 – 384.en_US
dc.identifier.citedreferencePraefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004; 5: 133 – 147.en_US
dc.identifier.citedreferenceSchafer DA. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 2004; 5: 463 – 469.en_US
dc.identifier.citedreferenceOrth JD, McNiven MA. Dynamin at the actin-membrane interface. Curr Opin Cell Biol 2003; 15: 31 – 39.en_US
dc.identifier.citedreferenceGold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A. Dynamin 2 is required for phagocytosis in macrophages. J Exp Med 1999: 190: 1849 – 1856.en_US
dc.identifier.citedreferenceKruchten AE, McNiven MA. Dynamin as a mover and pincher during cell migration and invasion. J Cell Sci 2006; 119: 1683 – 1690.en_US
dc.identifier.citedreferenceRamachandran R, Surka M, Chappie JS, Fowler DM, Foss TR, Song BD, Schmid SL. The dynamin middle domain is critical for tetramerization and higher-order self-assembly. EMBO J 2007; 26: 559 – 566.en_US
dc.identifier.citedreferenceSmirnova E, Shurland DL, Newman-Smith ED, Pishvaee B, van der Bliek AM. A model for dynamin self-assembly based on binding between three different protein domains. J Biol Chem 1999; 274: 14942 – 14947.en_US
dc.identifier.citedreferenceKlein DE, Lee A, Frank DW, Marks MS, Lemmon MA. The pleckstrin homology domains of dynamin isoforms require oligomerization for high affinity phosphoinositide binding. J Biol Chem 1998; 273: 27725 – 27733.en_US
dc.identifier.citedreferenceVallis Y, Wigge P, Marks B, Evans PR, McMahon HT. Importance of the pleckstrin homology domain of dynamin in clathrin-mediated endocytosis. Curr Biol 1999; 9: 257 – 260.en_US
dc.identifier.citedreferenceNicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J. Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 2007; 39: 1134 – 1139.en_US
dc.identifier.citedreferencePeter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT. BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 2004; 303: 495 – 499.en_US
dc.identifier.citedreferenceRen G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70: 37 – 120.en_US
dc.identifier.citedreferenceOwen DJ. Linking endocytic cargo to clathrin: structural and functional insights into coated vesicle formation. Biochem Soc Trans 2004; 32: 1 – 14.en_US
dc.identifier.citedreferenceButler MH, David C, Ochoa GC, Freyberg Z, Daniell L, Grabs D, Cremona O, De Camilli P. Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 1997; 137: 1355 – 1367.en_US
dc.identifier.citedreferenceLee E, Marcucci M, Daniell L, Pypaert M, Weisz OA, Ochoa GC, Farsad K, Wenk MR, De Camilli P. Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 2002; 297: 1193 – 1196.en_US
dc.identifier.citedreferenceMuller AJ, Baker JF, DuHadaway JB, Ge K, Farmer G, Donover PS, Meade R, Reid C, Grzanna R, Roach AH, Shah N, Soler AP, Prendergast GC. Targeted disruption of the murine Bin1/Amphiphysin II gene does not disable endocytosis but results in embryonic cardiomyopathy with aberrant myofibril formation. Mol Cell Biol 2003; 23: 4295 – 4306.en_US
dc.identifier.citedreferenceJungbluth H, Zhou H, Sewry CA, Robb S, Treves S, Bitoun M, Guicheney P, Buj-Bello A, Bonnemann C, Muntoni F. Centronuclear myopathy due to a de novo dominant mutation in the skeletal muscle ryanodine receptor (RYR1) gene. Neuromuscul Disord 2007; 17: 338 – 345.en_US
dc.identifier.citedreferenceTosch V, Rohde HM, Tronchere H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J. A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 2006; 15: 3098 – 3106.en_US
dc.identifier.citedreferenceEchaniz-Laguna A, Nicot AS, Carre S, Franques J, Tranchant C, Dondaine N, Biancalana V, Mandel JL, Laporte J. Subtle central and peripheral nervous system abnormalities in a family with centronuclear myopathy and a novel dynamin 2 gene mutation. Neuromuscul Disord 2007; 17: 955 – 959.en_US
dc.identifier.citedreferenceAoki M. Dysferlinopathy. http://www.geneclinics.org/en_US
dc.identifier.citedreferenceBruno C, Sotgia F, Gazzenrro E, Minetti C, Lisanti MP. Caveolinopathies. http://www.geneclinics.org/en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.