Show simple item record

Transcription of σ 54 -dependent but not σ 28 -dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus

dc.contributor.authorHendrixson, David R.en_US
dc.contributor.authorDiRita, Victor J.en_US
dc.date.accessioned2010-06-01T20:15:20Z
dc.date.available2010-06-01T20:15:20Z
dc.date.issued2003-10en_US
dc.identifier.citationHendrixson, David R.; DiRita, Victor J. (2003). "Transcription of σ 54 -dependent but not σ 28 -dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatus." Molecular Microbiology 50(2): 687-702. <http://hdl.handle.net/2027.42/73376>en_US
dc.identifier.issn0950-382Xen_US
dc.identifier.issn1365-2958en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73376
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14617189&dopt=citationen_US
dc.description.abstractWe performed a genetic analysis of flagellar regulation in Campylobacter jejuni , from which we elucidated key portions of the flagellar transcriptional cascade in this bacterium. For this study, we developed a reporter gene system for C. jejuni involving astA , encoding arylsulphatase, and placed astA under control of the σ 54 -regulated flgDE2 promoter in C. jejuni strain 81-176. The astA reporter fusion combined with transposon mutagenesis allowed us to identify genes in which insertions abolished flgDE2 expression; genes identified were on both the chromosome and the plasmid pVir. Included among the chromosomal genes were genes encoding a putative sensor kinase and the σ 54 -dependent transcriptional activator, FlgR. In addition, we identified specific flagellar genes, including flhA , flhB , fliP , fliR and flhF , that are also required for transcription of flgDE2 and are presumably at the beginning of the C. jejuni flagellar transcriptional cascade. Deletion of any of these genes reduced transcription of both flgDE2 and another σ 54 -dependent flagellar gene, flaB , encoding a minor flagellin. Transcription of the σ 28 -dependent gene flaA , encoding the major flagellin, was largely unaffected in the mutants. Further examination of flaA transcription revealed significant σ 28 -independent transcription and only weak repressive activity of the putative anti-σ 28 factor FlgM. Our study suggests that σ 54 -dependent transcription of flagellar genes in C. jejuni is linked to the formation of the flagellar secretory apparatus. A key difference in the C. jejuni flagellar transcriptional cascade compared with other bacteria that use σ 28 for transcription of flagellar genes is that a mechanism to repress significantly σ 28 -dependent transcription of flaA in flagellar assembly mutants is absent in C. jejuni .en_US
dc.format.extent306530 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2003 Blackwell Publishing Ltden_US
dc.titleTranscription of σ 54 -dependent but not σ 28 -dependent flagellar genes in Campylobacter jejuni is associated with formation of the flagellar secretory apparatusen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical School, 5641 Medical Science II, Box 0620, Ann Arbor, MI 48109-0620, USA.en_US
dc.contributor.affiliationotherUnit for Laboratory Animal Medicine anden_US
dc.identifier.pmid14617189en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73376/1/j.1365-2958.2003.03731.x.pdf
dc.identifier.doi10.1046/j.1365-2958.2003.03731.xen_US
dc.identifier.sourceMolecular Microbiologyen_US
dc.identifier.citedreferenceAkerley, B. J., and Lampe, D. J. ( 2002 ) Analysis of gene function in bacterial pathogens by GAMBIT. Methods Enzymol 358: 100 – 108.en_US
dc.identifier.citedreferenceAllan, E., Dorrell, N., Foynes, S., Anyim, M., and Wren, B. W. ( 2000 ) Mutational analysis of genes encoding the early flagellar components of Helicobacter pylori: evidence for transcriptional regulation of flagellin A biosynthesis. J Bacteriol 182: 5274 – 5277.en_US
dc.identifier.citedreferenceArora, S. K., Ritchings, B. W., Almira, E. C., Lory, S., and Ramphal, R. ( 1998 ) The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for mucin adhesion. Infect Immun 66: 1000 – 1007.en_US
dc.identifier.citedreferenceBacon, D. J., Alm, R. A., Burr, D. H., Hu, L., Kopecko, D. J., Ewing, C. P., et al. ( 2000 ) Involvement of a plasmid in the virulence of Campylobacter jejuni 81-176. Infect Immun 68: 4384 – 4390.en_US
dc.identifier.citedreferenceBacon, D. J., Alm, R. A., Hu, L., Hickey, T. E., Ewing, C. P., Batchelor, R. A., et al. ( 2002 ) DNA sequence and mutational analyses of the pVir plasmid of Campylobacter jejuni 81-176. Infect Immun 70: 6242 – 6250.en_US
dc.identifier.citedreferenceBaillon, M. L., van Vliet, A. H., Ketley, J. M., Constantinidou, C., and Penn, C. W. ( 1999 ) An iron-regulated alkyl hydroperoxide reductase (AhpC) confers aerotolerance and oxidative stress resistance to the microaerophilic pathogen Campylobacter jejuni. J Bacteriol 181: 4798 – 4804.en_US
dc.identifier.citedreferenceBenson, A. K., Ramakrishnan, G., Ohta, N., Feng, J., Ninfa, A. J., and Newton, A. ( 1994 ) The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc Natl Acad Sci USA 91: 4989 – 4933.en_US
dc.identifier.citedreferenceBlack, R. E., Levine, M. M., Clements, M. L., Hughes, T. P., and Blaser, M. J. ( 1988 ) Experimental Campylobacter jejuni infection in humans. J Infect Dis 157: 472 – 479.en_US
dc.identifier.citedreferenceCarpenter, P. B., Hanlon, D. W., and Ordal, G. W. ( 1992 ) flhF, a Bacillus subtilis flagellar gene that encodes a putative GTP-binding protein. Mol Microbiol 6: 2705 – 2713.en_US
dc.identifier.citedreferenceChadsey, M. S., Karlinsey, J. E., and Hughes, K. T. ( 1998 ) The flagellar anti-σ factor FlgM actively dissociates Salmonella typhimurium σ 28 RNA polymerase holoenzyme. Genes Dev 12: 3123 – 3136.en_US
dc.identifier.citedreferenceColland, F., Rain, J. -C., Gounon, P., Labigne, A., Legrain, P., and De Reuse, H. ( 2001 ) Identification of the Helicobacter pylori anti-σ 28 factor. Mol Microbiol 41: 477 – 487.en_US
dc.identifier.citedreferenceFigurski, D. H., and Helinski, D. R. ( 1979 ) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA 76: 1648 – 1652.en_US
dc.identifier.citedreferenceGillen, K. L., and Hughes, K. T. ( 1991 ) Molecular characterization of flgM, a gene encoding a negative regulator of flagellin synthesis in Salmonella typhimurium. J Bacteriol 173: 6453 – 6459.en_US
dc.identifier.citedreferenceGolden, N. J., and Acheson, D. W. K. ( 2002 ) Identification of motility and autoagglutination Campylobacter jejuni mutants by random transposon mutagenesis. Infect Immun 70: 1761 – 1771.en_US
dc.identifier.citedreferenceGrant, C. C. R., Konkel, M. E., Cieplak, W., Jr, and Tompkins, L. S. ( 1993 ) Role of flagella in adherence, internalization, and translocation of Campylobacter jejuni in nonpolarized and polarized epithelial cell cultures. Infect Immun 61: 1764 – 1771.en_US
dc.identifier.citedreferenceGuerry, P., Logan, S. M., Thornton, S., and Trust, T. J. ( 1990 ) Genomic organization and expression of Campylobacter flagellin genes. J Bacteriol 172: 1853 – 1860.en_US
dc.identifier.citedreferenceGuerry, P., Alm, R. A., Power, M. E., Logan, S. M., and Trust, T. J. ( 1991 ) Role of two flagellin genes in Campylobacter motility. J Bacteriol 173: 4757 – 4764.en_US
dc.identifier.citedreferenceGuerry, P., Yao, R., Alm, R. A., Burr, D. H., and Trust, T. J. ( 1994 ) Systems of experimental genetics for Campylobacter species. Methods Enzymol 235: 474 – 481.en_US
dc.identifier.citedreferenceHenderson, M. J., and Milazzo, F. H. ( 1979 ) Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. J Bacteriol 139: 80 – 87.en_US
dc.identifier.citedreferenceHendrixson, D. R., Akerley, B. J., and DiRita, V. J. ( 2001 ) Transposon mutagenesis of Campylobacter jejuni identifies a bipartite energy taxis system required for motility. Mol Microbiol 40: 214 – 224.en_US
dc.identifier.citedreferenceHiggins, D. E., and DiRita, V. J. ( 1994 ) Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 14: 17 – 29.en_US
dc.identifier.citedreferenceHiguchi, R. ( 1990 ) Recombinant PCR. In PCR Protocols: a Guide to Methods and Applications. Innis, M. A., Gelfrand, D. H., Sninsky, J. J., and White, T. J. (eds). London: Academic Press, pp. 177 – 183.en_US
dc.identifier.citedreferenceHughes, K. T., Gillen, K. L., Semon, M. J., and Karlinsey, J. E. ( 1993 ) Sensing structural intermediates in bacterial flagellar assembly by export of a negative regulator. Science 262: 1277 – 1280.en_US
dc.identifier.citedreferenceJagannathan, A., Constantinidou, C., and Penn, C. W. ( 2001 ) Roles of rpoN, fliA, and flgR in expression of flagella in Campylobacter jejuni. J Bacteriol 183: 2937 – 2942.en_US
dc.identifier.citedreferenceJosenhans, C., Niehus, E., Amersbach, S., HÖrster, A., Betz, C., Drescher, B., et al. ( 2002 ) Functional characterization of the antagonistic flagellar late regulators FliA and FlgM of Helicobacter pylori and their effects on the H. pylori transcriptome. Mol Microbiol 43: 307 – 322.en_US
dc.identifier.citedreferenceJyot, J., Dasgupta, N., and Ramphal, R. ( 2002 ) FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol 184: 5251 – 5260.en_US
dc.identifier.citedreferenceKarlinsey, J. E., Tanaka, S., Bettenworth, V., Yamaguchi, S., Boos, W., Aizawa, S. -I., and Hughes, K. T. ( 2000 ) Completion of the hook-basal body complex of the Salmonella typhimurium flagellum is coupled to FlgM secretion and fliC transcription. Mol Microbiol 37: 1220 – 1231.en_US
dc.identifier.citedreferenceKarlyshev, A. V., Linton, D., Gregson, N. A., and Wren, B. W. ( 2002 ) A novel paralogous gene family involved in phase-variable flagella-mediated motility in Campylobacter jejuni. Microbiology 148: 473 – 480.en_US
dc.identifier.citedreferenceKim, Y. -K., and McCarter, L. L. ( 2000 ) Analysis of the polar flagellar gene system of Vibrio parahaemolyticus. J Bacteriol 182: 3693 – 3704.en_US
dc.identifier.citedreferenceKinsella, N., Guerry, P., Cooney, J., and Trust, T. J. ( 1997 ) The flgE gene of Campylobacter coli is under the control of the alternative sigma factor σ 54. J Bacteriol 179: 4647 – 4653.en_US
dc.identifier.citedreferenceKlose, K. E., and Mekalanos, J. J. ( 1998a ) Differential regulation of multiple flagellins in Vibrio cholerae. J Bacteriol 180: 303 – 316.en_US
dc.identifier.citedreferenceKlose, K. E., and Mekalanos, J. J. ( 1998b ) Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol 28: 501 – 520.en_US
dc.identifier.citedreferenceKutsukake, K., and Iino, T. ( 1994 ) Role of the FliA-FlgM regulatory system on the transcriptional control of the flagellar regulon and flagellar formation in Salmonella typhimurium. J Bacteriol 176: 3598 – 3605.en_US
dc.identifier.citedreferenceKutsukake, K., Ohya, Y., and Iino, T. ( 1990 ) Transcriptional analysis of the flagellar regulon of Salmonella typhimurium. J Bacteriol 172: 741 – 747.en_US
dc.identifier.citedreferenceLabigne-Roussel, A., Courcoux, P., and Tompkins, L. ( 1988 ) Gene disruption and replacement as a feasible approach for mutagenesis of Campylobacter jejuni. J Bacteriol 170: 1704 – 1708.en_US
dc.identifier.citedreferenceLÜneberg, E., Glenn-Calvo, E., Hartmann, M., Bar, W., and Frosch, M. ( 1998 ) The central, surface-exposed region of the flagellar hook protein FlgE of Campylobacter jejuni shows hypervariability among strains. J Bacteriol 180: 3711 – 3714.en_US
dc.identifier.citedreferenceMacnab, R. M. ( 1996 ) Flagella and motility. In Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd edn. Neidhardt, F. C., Curtis, R., III, Ingraham, J. L., Lin, E. C. C., Low, K. B., Magasanik, B., et al. (eds). Washington, DC: American Society for Microbiology Press, pp. 123 – 145.en_US
dc.identifier.citedreferenceMakarova, O., Kamberov, E., and Margolis, B. ( 2000 ) Generation of deletion and point mutations with one primer in a single cloning step. Biotechniques 29: 970 – 972.en_US
dc.identifier.citedreferenceMatz, C., van Vliet, A. H. M., Ketley, J. M., and Penn, C. W. ( 2002 ) Mutational and transcriptional analysis of the Campylobacter jejuni flagellar biosynthesis gene flhB. Microbiology 148: 1679 – 1685.en_US
dc.identifier.citedreferenceMinamino, T., and Macnab, R. M. ( 1999 ) Components of the Salmonella flagellar export apparatus and classification of export substrates. J Bacteriol 181: 1388 – 1394.en_US
dc.identifier.citedreferenceNachamkin, I., Yang, X. -H., and Stern, N. J. ( 1993 ) Role of Campylobacter jejuni flagella as colonization factors of three-day-old chicks: analysis with flagellar mutants. Appl Environ Microbiol 59: 1269 – 1273.en_US
dc.identifier.citedreferenceNuijten, P. J. M., van Asten, F. J. A. M., Gaastra, W., and van der Zeijst, B. A. M. ( 1990 ) Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265: 17798 – 17804.en_US
dc.identifier.citedreferenceO'Toole, P. W., Kostrzynska, M., and Trust, T. J. ( 1994 ) Non-motile mutants of Helicobacter pylori and Helicobacter mustelae defective in flagellar hook production. Mol Microbiol 14: 691 – 703.en_US
dc.identifier.citedreferenceOchman, H., Gerber, A. S., and Hartl, D. L. ( 1988 ) Genetic application of an inverse polymerase chain reaction. Genetics 120: 621 – 623.en_US
dc.identifier.citedreferenceOhnishi, K., Kutsukake, K., Suzuki, H., and Iino, T. ( 1992 ) A novel transcriptional regulation mechanism in the flagellar regulon of Salmonella typhimurium: an anti-sigma factor inhibits the activity of the flagellum-specific sigma factor, σ F. Mol Microbiol 6: 3149 – 3157.en_US
dc.identifier.citedreferencePandza, S., Baetens, M., Park, C. H., Au, T., Keyhan, M., and Matin, A. ( 2000 ) The G-protein FlhF has a role in polar flagellar placement and general stress response induction in Pseudomonas putida. Mol Microbiol 36: 414 – 423.en_US
dc.identifier.citedreferenceParkhill, J., Wren, B. W., Mungall, K., Ketley, J. M., Churcher, C., Basham, D., et al. ( 2000 ) The genome sequence of the food-borne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665 – 668.en_US
dc.identifier.citedreferenceProuty, M. G., Correa, N. E., and Klose, K. E. ( 2001 ) The novel σ 54 - and σ 28 -dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol 39: 1595 – 1609.en_US
dc.identifier.citedreferenceQuon, K. C., Marczynksi, G. T., and Shapiro, L. ( 1996 ) Cell cycle control by an essential bacterial two-component signal transduction protein. Cell 84: 83 – 93.en_US
dc.identifier.citedreferenceRamakrishnan, G., Zhao, J. -L., and Newton, A. ( 1994 ) Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol 176: 7587 – 7600.en_US
dc.identifier.citedreferenceSchmitz, A., Josenhans, C., and Suerbaum, S. ( 1997 ) Cloning and characterization of the Helicobacter pylori flbA gene, which codes for a membrane protein involved in coordinated expression of flagellar genes. J Bacteriol 179: 987 – 997.en_US
dc.identifier.citedreferenceSpohn, G., and Scarlato, V. ( 1999 ) Motility of Helicobacter pylori is coordinately regulated by the transcriptional activator FlgR, an NtrC homolog. J Bacteriol 181: 593 – 599.en_US
dc.identifier.citedreferenceStarnbach, M. N., and Lory, S. ( 1992 ) The fliA ( rpoF ) gene of Pseudomonas aeruginosa encodes an alternative sigma factor required for flagellin synthesis. Mol Microbiol 6: 459 – 469.en_US
dc.identifier.citedreferenceStock, A. M., Robinson, V. L., and Goudreau, P. N. ( 2000 ) Two-component signal transduction. Annu Rev Biochem 69: 183 – 215.en_US
dc.identifier.citedreferenceTotten, P. A., Lara, J. C., and Lory, S. ( 1990 ) The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172: 389 – 396.en_US
dc.identifier.citedreferencevan Vliet, A. H. M., Wood, A. C., Henderson, J., Wooldridge, K., and Ketley, J. M. ( 1997 ) Genetic manipulation of enteric Campylobacter species. Methods Microbiol 27: 407 – 419.en_US
dc.identifier.citedreferencevan Vliet, A. H., Baillon, M. A., Penn, C. W., and Ketley, J. M. ( 2001 ) The iron-induced ferredoxin FdxA of Campylobacter jejuni is involved in aerotolerance. FEMS Microbiol Lett 196: 189 – 193.en_US
dc.identifier.citedreferenceWassenaar, T. M., Bleumink-Pluym, N. M. C., and van der Zeijst, B. A. M. ( 1991 ) Inactivation of Campylobacter jejuni flagellin genes by homologous recombination demonstrates that flaA but not flaB is required for invasion. EMBO J 10: 2055 – 2061.en_US
dc.identifier.citedreferenceWassenaar, T. M., van der Zeijst, B. A. M., Ayling, R., and Newell, D. G. ( 1993 ) Colonization of chicks by motility mutants of Campylobacter jejuni demonstrates the importance of flagellin A expression. J Gen Microbiol 139: 1171 – 1175.en_US
dc.identifier.citedreferenceWiesner, R. S., Hendrixson, D. R., and DiRita, V. J. ( 2003 ) Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J Bacteriol ( in press ).en_US
dc.identifier.citedreferenceWÖsten, M. M. S. M., Boeve, M., Koot, M. G. A., van Nuenen, A. C., and van der Zeijst, B. A. M. ( 1998 ) Identification of Campylobacter jejuni promoter sequences. J Bacteriol 180: 594 – 599.en_US
dc.identifier.citedreferenceWu, J., and Newton, A. ( 1997 ) Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol 24: 233 – 239.en_US
dc.identifier.citedreferenceWu, J., Benson, A., and Newton, A. ( 1995 ) Global regulation of a σ 54 -dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol 177: 3241 – 3250.en_US
dc.identifier.citedreferenceYao, R., and Guerry, P. ( 1996 ) Molecular cloning and site-specific mutagenesis of a gene involved in arylsulfatase production in Campylobacter jejuni. J Bacteriol 178: 3335 – 3338.en_US
dc.identifier.citedreferenceYao, R., Burr, D. H., Doig, P., Trust, T. J., Niu, H., and Guerry, P. ( 1994 ) Isolation of motile and non-motile insertional mutants of Campylobacter jejuni: the role of motility in adherence and invasion of eukaryotic cells. Mol Microbiol 14: 883 – 893.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.