Show simple item record

Progress in the molecular biology of inherited bleeding disorders

dc.contributor.authorPipe, Steven W.en_US
dc.contributor.authorHigh, K. A.en_US
dc.contributor.authorOhashi, K.en_US
dc.contributor.authorUral, A. U.en_US
dc.contributor.authorLillicrap, D.en_US
dc.date.accessioned2010-06-01T20:16:18Z
dc.date.available2010-06-01T20:16:18Z
dc.date.issued2008-07en_US
dc.identifier.citationPIPE, S. W.; HIGH, K. A.; OHASHI, K.; URAL, A. U.; LILLICRAP, D. (2008). "Progress in the molecular biology of inherited bleeding disorders." Haemophilia 14(s3 State of the Art. XXVIII International Congress of the World Federation of Hemophilia ): 130-137. <http://hdl.handle.net/2027.42/73391>en_US
dc.identifier.issn1351-8216en_US
dc.identifier.issn1365-2516en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73391
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18510533&dopt=citationen_US
dc.format.extent143744 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2008 Blackwell Publishing Ltden_US
dc.titleProgress in the molecular biology of inherited bleeding disordersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum* Department of Pediatrics and Pathology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationother† Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USAen_US
dc.contributor.affiliationother† Institute of Advanced Biomedical Engineering and Science and Department of Surgery, Tokyo Women’s Medical University, Tokyo, Japanen_US
dc.contributor.affiliationother§ Department of Haematology, Gulhane Military Medical Faculty, Medical and Cancer Research Center, Etlik-Ankara, Turkeyen_US
dc.contributor.affiliationother¶ Department of Pathology & Molecular Medicine, Queen’s University, Kingston, Canadaen_US
dc.identifier.pmid18510533en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73391/1/j.1365-2516.2008.01718.x.pdf
dc.identifier.doi10.1111/j.1365-2516.2008.01718.xen_US
dc.identifier.sourceHaemophiliaen_US
dc.identifier.citedreferencePipe SW. The promise and challenges of bioengineered recombinant clotting factors. J Thromb Haemost 2005; 3: 1692 – 701.en_US
dc.identifier.citedreferenceSaenko EL, Pipe SW. Strategies towards a longer acting factor VIII. Haemophilia 2006; 12 ( Suppl 3 ): 42 – 51.en_US
dc.identifier.citedreferenceBarrow RT, Lollar P. Neutralization of antifactor VIII inhibitors by recombinant porcine factor VIII. J Thromb Haemost 2006; 4: 2223 – 9.en_US
dc.identifier.citedreferenceBitonti AJ, Dumont JA, Low SC et al. Pulmonary delivery of an erythropoietin Fc fusion protein in non-human primates through an immunoglobulin transport pathway. Proc Natl Acad Sci USA 2004; 101: 9763 – 8.en_US
dc.identifier.citedreferenceTranholm M, Kristensen K, Kristensen AT, Pyke C, Rojkjaer R, Persson E. Improved hemostasis with superactive analogs of factor VIIa in a mouse model of hemophilia A. Blood 2003; 102: 3615 – 20.en_US
dc.identifier.citedreferenceMargaritis P, High KA. Advances in gene therapy using factor VIIa in hemophilia. Semin Hematol 2006; 43: S101 – 4.en_US
dc.identifier.citedreferencePollak E, High KA. Genetic disorders of coagulation. In: Warrell D, Cox T, Firth J, Benz E, eds. Oxford Textbook of Medicine, Vol. 3, 4th edn. Oxford: Oxford University Press, 2003: 757 – 67.en_US
dc.identifier.citedreferenceSchwarzwaelder K, Howe SJ, Schmidt M et al. Gammaretrovirus-mediated correction of SCID-X1 is associated with skewed vector integration site distribution in vivo. J Clin Invest 2007; 117: 2241 – 9.en_US
dc.identifier.citedreferencePowell JS, Ragni MV, White GC II et al. Phase 1 trial of FVIII gene transfer for severe hemophilia A using a retroviral construct administered by peripheral intravenous infusion. Blood 2003; 102: 2038 – 45.en_US
dc.identifier.citedreferenceRoth DA, Tawa NE Jr, O’Brien JM, Treco DA, Selden RF. Factor Transkaryotic Therapy Study Group. Nonviral transfer of the gene encoding coagulation factor VIII in patients with severe hemophilia A. N Engl J Med 2001; 344: 1735 – 42.en_US
dc.identifier.citedreferenceBalaguÉ C, Zhou J, Dai Y et al. Sustained high-level expression of full-length human factor VIII and restoration of clotting activity in hemophilic mice using a minimal adenovirus vector. Blood 2000; 95: 820 – 8.en_US
dc.identifier.citedreferenceMount JD, Herzog RW, Tillson DM et al. Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy. Blood 2002; 99: 2670 – 6.en_US
dc.identifier.citedreferenceDonsante A, Vogler C, Muzyczka N et al. Observed incidence of tumorigenesis in long-term rodent studies of rAAV vectors. Gene Ther 2001; 8: 1343 – 6.en_US
dc.identifier.citedreferenceDonsante A, Miller DG, Li Y et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007; 317: 477.en_US
dc.identifier.citedreferenceManno CS, Chew AJ, Hutchison S et al. AAV-mediated factor IX gene transfer to skeletal muscle in patients with severe hemophilia B. Blood 2003; 101: 2963 – 72.en_US
dc.identifier.citedreferenceArruda VR, Stedman HH, Nichols TC et al. Regional intravascular delivery of AAV-2-FIX to skeletal muscle achieves long-term correction of hemophilia B in a large animal model. Blood 2005; 105: 3458 – 64.en_US
dc.identifier.citedreferenceWang L, Calcedo R, Nichols TC et al. Sustained correction of disease in naive and AAV2-pretreated hemophilia B dogs: AAV2/8-mediated, liver-directed gene therapy. Blood 2005; 105: 3079 – 86.en_US
dc.identifier.citedreferenceScallan CD, Lillicrap D, Jiang H et al. Sustained phenotypic correction of canine hemophilia A using an adeno-associate viral vector. Blood 2003; 102: 2031 – 7.en_US
dc.identifier.citedreferenceManno CS, Pierce GF, Arruda VR et al. Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response. Nat Med 2006; 12: 342 – 7.en_US
dc.identifier.citedreferenceMingozzi F, Maus MV, Hui DJ et al. CD8(+) T-cell responses to adeno-associated virus capsid in humans. Nat Med 2007; 13: 419 – 22.en_US
dc.identifier.citedreferenceNathwani AC, Gray JT, Ng CY et al. Self-complementary adeno-associated virus vectors containing a novel liver-specific human factor IX expression cassette enable highly efficient transduction of murine and nonhuman primate liver. Blood 2006; 107: 2653 – 61.en_US
dc.identifier.citedreferenceDhawan A, Mitry RR, Hughes RD et al. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 2004; 78: 1812 – 4.en_US
dc.identifier.citedreferenceYokoyama T, Ohashi K, Kuge H et al. In vivo engineering of metabolically active hepatic tissues in a neovascularized subcutaneous cavity. Am J Transplant 2006; 6: 50 – 9.en_US
dc.identifier.citedreferenceOhashi K, Waugh JM, Dake MD et al. Liver tissue engineering at extrahepatic sites in mice as a potential new therapy for genetic liver diseases. Hepatology 2005; 41: 132 – 40.en_US
dc.identifier.citedreferenceOhashi K, Marion PL, Nakai H et al. Sustained survival of human hepatocytes in mice: a model for in vivo infection with human hepatitis B and hepatitis delta viruses. Nat Med 2000; 6: 327.en_US
dc.identifier.citedreferenceOhashi K. Liver tissue engineering: the future of liver therapeutics. Hepatol Res 2008 ( in press ).en_US
dc.identifier.citedreferenceOhashi K, Yokoyama T, Yamato M et al. Engineering functional two- and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 2007; 13: 880 – 5.en_US
dc.identifier.citedreferenceYang J, Yamato M, Shimizu T et al. Reconstruction of functional tissues with cell sheet engineering. Biomaterials 2007; 28: 5033 – 43.en_US
dc.identifier.citedreferenceOh T, Peister A, Ohashi K, Park F. Transplantation of murine bone marrow stromal cells under the kidney capsule to secrete coagulation factor VIII. Cell Transplant 2006; 15: 637 – 45.en_US
dc.identifier.citedreferenceRoosendaal G, Lafeber FP. Pathogenesis of haemophilic arthropathy. Haemophilia 2006; 12 ( Suppl 3 ): 117 – 21.en_US
dc.identifier.citedreferenceHoots WK. Pathogenesis of hemophilic arthropathy. Semin Hematol 2006; 43 ( Suppl 1 ): S18 – 22.en_US
dc.identifier.citedreferenceDe Bari C, Dell’accio F. Mesenchymal stem cells in rheumatology: a regenerative approach to joint repair. Clin Sci 2007; 113: 339 – 48.en_US
dc.identifier.citedreferenceLukic IK, Grcevic D, Kovacic N et al. Alteration of newly induced endochondral bone formation in adult mice without tumour necrosis factor receptor 1. Clin Exp Immunol 2005; 139: 236 – 44.en_US
dc.identifier.citedreferenceShealy DJ, Wooley PH, Emmell E et al. Anti-TNF-alpha antibody allows healing of joint damage in polyarthritic transgenic mice. Arhritis Res 2002; 4: R7.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.