Show simple item record

Molecular analysis of representative Streptococcus gordonii Spp phase variants reveals no differences in the glucosyltransferase structural gene, gtfG

dc.contributor.authorVickerman, M. M.en_US
dc.contributor.authorJones, G. W.en_US
dc.contributor.authorClewell, Don B.en_US
dc.date.accessioned2010-06-01T20:16:44Z
dc.date.available2010-06-01T20:16:44Z
dc.date.issued1997-04en_US
dc.identifier.citationVickerman, M. M.; Jones, G. W.; Clewell, D. B. (1997). "Molecular analysis of representative Streptococcus gordonii Spp phase variants reveals no differences in the glucosyltransferase structural gene, gtfG ." Oral Microbiology and Immunology 12(2): 82-90. <http://hdl.handle.net/2027.42/73398>en_US
dc.identifier.issn0902-0055en_US
dc.identifier.issn1399-302Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73398
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9227131&dopt=citationen_US
dc.format.extent18464408 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsMunksgaard 1997en_US
dc.subject.otherStreptococcu Gordoniien_US
dc.subject.otherOral Streptococcien_US
dc.subject.otherGlucosyltransferaseen_US
dc.subject.otherPhase Veriationen_US
dc.subject.otherNucleotide Sequenceen_US
dc.titleMolecular analysis of representative Streptococcus gordonii Spp phase variants reveals no differences in the glucosyltransferase structural gene, gtfGen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbsecondlevelMicrobiology and Immunologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, USAen_US
dc.contributor.affiliationotherDepartment of Microbiology and Immunology, School of Medicine, Ann Arbor, USAen_US
dc.identifier.pmid9227131en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73398/1/j.1399-302X.1997.tb00622.x.pdf
dc.identifier.doi10.1111/j.1399-302X.1997.tb00622.xen_US
dc.identifier.sourceOral Microbiology and Immunologyen_US
dc.identifier.citedreferenceAppelbaum B, Golub E, Holt S, Rosan B. In vitro studies of dental plaque formation: adsorption of oral streptococci to hydroxyapatite. Infect Immun 1979: 25: 717 – 728.en_US
dc.identifier.citedreferenceAusubel FM, Brent B, Kingston RE et al. Current protocols in molecular biology. New York: John Wiley & Sons, 1987.en_US
dc.identifier.citedreferenceColson P, Jennings HJ, Smith ICP. Composition, sequence and conformation of polymers and oligomers of glucose as revealed by carbon-13 nuclear magnetic resonance. J Am Chem Soc 1974: 96: 8081 – 8087.en_US
dc.identifier.citedreferenceFerretti JJ, Gilpin ML, Russell RRB. Nucleotide sequence of a glucosyltransferase gene from Streptococcus sobrinus MFe28. J Bacteriol 1987: 169: 4271 – 4278.en_US
dc.identifier.citedreferenceFrandsen EVG, Pedrazzoli V, Kilian M. Ecology of viridans streptococci in the oral cavity and pharynx. Oral Microbiol Immunol 1991: 6: 129 – 133.en_US
dc.identifier.citedreferenceFunane K, Shiraiwa M, Hashimoto K, Ichishima E, Kobayashi M. An active-site peptide containing the second essential carboxyl group of dextransucrase from Leuconostoc mesenteroides by chemical modifications. Biochemistry 1993: 32: 13696 – 13702.en_US
dc.identifier.citedreferenceGiffard PM, Simpson CL, Milward CP, Jacques NA. Molecular characterization of a cluster of at least two glucosyltransferase genes in Streptococcus salivarius ATCC 25975. J Gen Microbiol 1991: 137: 2577 – 2593.en_US
dc.identifier.citedreferenceGrahame DA, Mayer RM. Purification and comparison of two forms of dextransucrase from Streptococcus sanguis. Carbohydr Res 1985: 142: 285 – 298.en_US
dc.identifier.citedreferenceGribskov M, Burgess RR. Sigma factors from E. coli, B. subtilis, phage SP01 and phage T4 are homologous proteins. Nucleic Acids Res 1986: 14: 6745 – 6763.en_US
dc.identifier.citedreferenceHaisman RJ, Jenkinson HF. Mutants of Streptococcus gordonii Challis overproducing glucosyltransferase. J Gen Microbiol 1991: 137: 483 – 489.en_US
dc.identifier.citedreferenceJones GW, Clewell DB, Charles LG, Vickerman MM. Multiple phase variation in haemolytic, adhesive and antigenie properties of Streptococcus gordonii. Microbiology 1996: 142: 181 – 189.en_US
dc.identifier.citedreferenceLaemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970: 227: 690 – 685.en_US
dc.identifier.citedreferenceLawson J, Gooder H. Growth and development of competence in the group H streptococci. J Bacteriol 1970: 102: 820 – 825.en_US
dc.identifier.citedreferenceLoesche WJ. Role of Streptococcus mutans in human dental decay. Microbiol Rev 1986: 50: 353 – 380.en_US
dc.identifier.citedreferenceMacrina FL, Evans RP, Tobian JA, Hartley DL, Clewell DB, Jones KR. Novel shuttle plasmid vehicles for Escherichia-Streptococcus transgeneric cloning. Gene 1983: 25: 145 – 150.en_US
dc.identifier.citedreferenceMooser G, Wong C. Isolation of a glucan binding domain of glucosyltransferase (1,6 alpha glucan synthase) from Streptococcus sobrinus. Infect Immun 1988: 56: 880 – 884.en_US
dc.identifier.citedreferenceMooser G, Hefta SA, Paxton RJ, Shively JE, Lee TD. Isolation and sequence of an active site peptide containing a catalytic aspartic acid from two Streptococcus sobrinus Α-glucosyltransferases. J Biol Chem 1991: 266: 8916 – 8922.en_US
dc.identifier.citedreferenceParker MT, Ball LC. Streptococci and aerococci associated with systemic infection in man. J Med Microbiol 1976: 9: 275 – 302.en_US
dc.identifier.citedreferencePlasterk RHA. Genetic switches: mechanism and function. Trends in Genetics 1992: 8: 403 – 406.en_US
dc.identifier.citedreferenceRobertson BD, Meyer TF. Genetic variation in pathogenic bacteria. Trends Genet 1992: 8: 422 – 427.en_US
dc.identifier.citedreferenceSanger F, Nicklen S, Couson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 1977: 74: 5463 – 5467.en_US
dc.identifier.citedreferenceScheld WM, Valone JA, Sande MA. Bacterial adherence in the pathogenesis of endocarditis. J Clin Invest 1978: 61: 1394 – 1404.en_US
dc.identifier.citedreferenceSeymour FR, Knapp RD, Lambers BL. Unusual dextrans. Structural analysis of soluble Dglucans from strains of Streptococcus mutatis by C-13-nuclear magnetic resonance spectroscopy. Carbohydr Res 1980: 84: 187 – 195.en_US
dc.identifier.citedreferenceShimamura A. Use of 13 C-NMR spectroscopy for the quantitative estimation of 3- O and 3,6-di- O -substituted Α-D-glucopyranosyl residues in Α-D-glucans formed by the D-glucosyltransferases of Streptococcus sobrinus. Carbohydr Res 1989: 185: 239 – 248.en_US
dc.identifier.citedreferenceShimamura A, Nakano Y, Mukasa H, Kuramitsu HK. Identification of amino acid residues in Streptococcus mutans glucosyltransferase influencing the structure of the glucan product. J Bacteriol 1994: 176: 4835 – 4850.en_US
dc.identifier.citedreferenceShiroza T, Ueda S, Kuramitsu HK. Sequence analysis of the gtfB gene from Streptococcus mutans. J Bacteriol 1987: 169: 4263 – 4270.en_US
dc.identifier.citedreferenceSulavik MC, Tardif G, Clewell DB. Identification of a gene, rgg, which regulates expression of glucosyltransferase and influences the Spp phenotype of Streptococcus gordonii Challis. J Bacteriol 1992: 174: 3577 – 3586.en_US
dc.identifier.citedreferenceTardif G, Sulavik MC, Jones GW, Clewell DB. Spontaneous switching of the sucrose-promoted colony phenotype in Streptococcus sanguis. Infect Immun 1989: 57: 3945 – 3948.en_US
dc.identifier.citedreferenceTerleckyj B, Willett NP, Shockman GD. Growth of several cariogenic strains of oral streptococci in a chemically defined medium. Infect Immun 1975: 11: 649 – 655.en_US
dc.identifier.citedreferenceVickerman MM, Clewell DB, Jones GW. Sucrose-promoted accumulation of growing glucosyltransferase variants of Streptococcus gordonii on hydroxyapatite surfaces. Infect Immun 1991: 59: 3523 – 3530.en_US
dc.identifier.citedreferenceVickerman MM, Clewell DB, Jones GW. Ecological implications of glucosyltransferase phase variation in Streptococcus gordonii. Appl Environ Microbiol 1991: 57: 3648 – 3651.en_US
dc.identifier.citedreferenceVickerman MM, Clewell DB, Jones GW. Glucosyltransferase phase variation in Streptococcus gordonii modifies adhesion to salivacoated hydroxyapatite surfaces in a sucrose-independent manner. Oral Microbiol Immunol 1992: 7: 118 – 120.en_US
dc.identifier.citedreferenceVickerman MM, Sulavik MC, Clewell DB. Molecular analysis of Streptococcus gordonii glucosyltransferase phase variants. In: Ferretti JJ, Gilmore MS, Klaenhammer, TR, Brown F, ed. Genetics of streptococci, enterococci and lactococci. Development of Biological Standards. Basel: Karger, 1995: 85: 309 – 314.en_US
dc.identifier.citedreferenceVickerman MM, Sulavik MC, Clewell DB. Oral streptococci with genetic determinants similar to the glucosyltransferase regulatory gene, rgg. Infect Immun 1995: 63: 4524 – 4527.en_US
dc.identifier.citedreferenceVickerman MM, Sulavik MC, Nowak JD, Gardner NM, Jones GW, Clewell DB. Nucleotide sequence analysis of the Streptococcus gordonii glucosyltransferase gene, gtfG. DNA Sequence ( in press ).en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.