Show simple item record

Delayed platelet engraftment in group O patients after autologous progenitor cell transplantation

dc.contributor.authorHoffmann, Sandraen_US
dc.contributor.authorZhou, Lanen_US
dc.contributor.authorGu, Yuanen_US
dc.contributor.authorDavenport, Robertson D.en_US
dc.contributor.authorCooling, Lauraen_US
dc.date.accessioned2010-06-01T20:17:25Z
dc.date.available2010-06-01T20:17:25Z
dc.date.issued2005-06en_US
dc.identifier.citationHoffmann, Sandra; Zhou, Lan; Gu, Yuan; Davenport, Robertson; Cooling, Laura (2005). "Delayed platelet engraftment in group O patients after autologous progenitor cell transplantation." Transfusion 45(6): 885-895. <http://hdl.handle.net/2027.42/73409>en_US
dc.identifier.issn0041-1132en_US
dc.identifier.issn1537-2995en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73409
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15934986&dopt=citationen_US
dc.description.abstractFucosylated glycans, including H-antigen, play critical roles in hematopoietic progenitor cell homing, adhesion, growth, and differentiation. H-active antigens are strongly expressed on CD34+ progenitor cells and committed megakaryocytic progenitors and may mediate adhesion to marrow stromal fibroblasts. We examined the possible influence of donor ABO type on platelet (PLT) engraftment after autologous peripheral blood progenitor cell transplant (PBPCT). STUDY DESIGN AND METHODS: A retrospective analysis of all patients who underwent a single autologous PBPCT between 1996 and 2000 were reviewed. Neutrophil and PLT engraftment were compared by patient ABO type and CD34+ cell dose by t test, chi-square test, analysis of variance, Kaplan-Meier probability, and log-rank test. RESULTS: Engraftment data was available in 195 patients. PLT engraftment was delayed in all patients, regardless of ABO type, at CD34+ PBPC doses of 2 × 10 6 to 3 × 10 6 per kg (p < 0.001). When examined by ABO type, late PLT engraftment (PLT count > 50 × 10 9 /L) was significantly delayed in group O patients relative to all non-group O patients (32.4 days vs. 19.6 days, p < 0.001). Approximately 50 percent of group O patients required more than 40 days to achieve late PLT recovery (p < 0.005). CONCLUSIONS: A group O phenotype may be associated with delayed PLT engraftment at lower CD34 doses.en_US
dc.format.extent264598 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights2005 American Association of Blood Banksen_US
dc.titleDelayed platelet engraftment in group O patients after autologous progenitor cell transplantationen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumFrom the Department of Pathology, University of Michigan, Ann Arbor, Michigan.en_US
dc.identifier.pmid15934986en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73409/1/j.1537-2995.2005.04346.x.pdf
dc.identifier.doi10.1111/j.1537-2995.2005.04346.xen_US
dc.identifier.sourceTransfusionen_US
dc.identifier.citedreferenceChan YH, Watt SM. Adhesion receptors on haematopoietic progenitor cells. Br J Haematol 2001; 112: 541 - 57.en_US
dc.identifier.citedreferenceHaltiwanger RS. Regulation of signal transduction pathways in development by glycosylation. Curr Opin Struct Biol 2002; 12: 593 - 8.en_US
dc.identifier.citedreferenceGonzalez-Amaro R, Sanchez-Madrid F. Cell adhesion molecules: selectins and integrins. Crit Rev Immunol 1999; 19: 389 - 429.en_US
dc.identifier.citedreferenceCooling L, Zhang DS, Koerner TA. Lewis X and sialyl Lewis X glycosphingolipids. Trends Glycoscience Glycotech 1997; 9: 191 - 209.en_US
dc.identifier.citedreferenceMazo IB, von Adrian UH. Adhesion and homing of blood-borne cells in bone marrow microvessels. J Leukocyte Biol 1999; 66: 25 - 32.en_US
dc.identifier.citedreferenceCarlesso N, Aster JC, Sklar J, Scadden DT. Notch1-induced delay of human hematopoietic progenitor cell differentia- tion is associated with altered cell cycle kinetics. Blood 1999; 93: 838 - 48.en_US
dc.identifier.citedreferenceVarnum-Finney B, Xu L, Brashem-Stein C, et al. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat Med 2000; 6: 1278 - 81.en_US
dc.identifier.citedreferenceAllman D, Aster JC, Pear WS. Notch signaling in hematopoiesis and early lymphocyte development. Immunol Rev 2002; 187: 75 - 86.en_US
dc.identifier.citedreferenceMilner LA, Bigas A, Kopan R, et al. Inhibition of granulocytic differentiation by mNotch1. Proc Natl Acad Sci U S A 1996; 93: 13014 - 9.en_US
dc.identifier.citedreferenceMoloney DJ, Panin VM, Johnston SH, et al. Fringe is a glycosyltransferase that modifies Notch. Nature 2000; 406: 369 - 75.en_US
dc.identifier.citedreferenceOkajima T, Xu A, Irvine KD. Modulation of notch-ligand binding by protein O-fucosyltransferase 1 and fringe. J Biol Chem 2003; 278: 42340 - 5.en_US
dc.identifier.citedreferenceZhou L, Myers J, Petryniak B, et al. Delta-like 1-induced Notch activation in hematopoietic stem cell: a process disturbed by absence of fucosylation. Transfusion 2003; 43S: 12A.en_US
dc.identifier.citedreferenceCao Y, Merling A, Karsten U, Schwartz-Albiez R. The fucosylated histo-blood group antigens H (type 2 blood group O, CD173) and Lewis Y (CD174) are expressed on CD34+ hematopoietic progenitors but absent on mature lymphocytes. Glycobiology 2001; 11: 677 - 83.en_US
dc.identifier.citedreferenceHosoi E, Hirose M, Hamano S. Expression levels of H-type Α(1,2)-fucosyltransferase gene and histo-blood group ABO gene corresponding to hematopoietic cell differentiation. Transfusion 2003; 43: 65 - 71.en_US
dc.identifier.citedreferenceOkumura M, Morishima Y, Michinori O, et al. Expression of H-related antigen on human megakaryocytes and megakaryocytic leukemic cells. Int J Hematol 1991; 54: 151 - 8.en_US
dc.identifier.citedreferenceSchmitz B, Thiele J, Otto F, et al. Interactions between endogenous lectins and fucosylated oligosaccharides in megakaryocyte-dependent fibroblast growth of the normal bone marrow. Leukemia 1996; 10: 1604 - 14.en_US
dc.identifier.citedreferenceZweegman S, Veenhof MA, Huijgens PC, Schuurhuis GJ, Drager AM. Regulation of megakaryocytopoiesis in an in vitro stroma model: preferential adhesion of megakaryo- cytic progenitors and subsequent inhibition of maturation. Exp Hematol 2000; 28: 401 - 10.en_US
dc.identifier.citedreferenceHan P, Guo XH, Story CJ. Enhanced expansion and maturation of megakaryocytic progenitors by fibronectin. Cytotherapy 2002; 4: 277 - 83.en_US
dc.identifier.citedreferenceSutherland DR, Anderson L, Keeney M, et al. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International society for hematotherapy and graft engineering. J Hematother 1996; 5: 213 - 26.en_US
dc.identifier.citedreferenceDiaz MA, Vicent MG, Garcia-Sanchez F, Vicario JL, Madero L. Long-term hematopoietic engraftment after autologous peripheral blood progenitor cell transplantation in pediatric patients: effect of the CD34+ cell dose. Vox Sang 2000; 79: 145 - 50.en_US
dc.identifier.citedreferenceKiss JE, Rybka WB, Winkelstein A, et al. Relationship of CD34+ cell dose to early and late hematopoiesis following autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1997; 19: 303 - 10.en_US
dc.identifier.citedreferenceWeaver CH, Hazelton B, Birch R, et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995; 86: 3961 - 9.en_US
dc.identifier.citedreferenceFeugier P, Bensoussan D, Girard F, et al. Hematologic recovery after autologous PBPC transplantation: importance of the number of postthaw CD34+ cells. Transfusion 2003; 43: 878 - 84.en_US
dc.identifier.citedreferenceBeguin Y, Baudoux E, Sautois B, et al. Hematopoietic recovery in cancer patients after transplantation of autologous blood CD34+ cells or unmanipulated peripheral blood stem and progenitor cells. Transfusion 1998; 83: 199 - 208.en_US
dc.identifier.citedreferenceKaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457.en_US
dc.identifier.citedreferenceSmith RJ, Sweetenham JW. A mononuclear cell dose of 3 × 1 0 8 /kg predicts early multilineage recovery in patients with malignant lymphoma treated with carmustine, etoposide, Ara-C and melphalan (BEAM) and peripheral blood progenitor cell transplantation. Exp Hematol 1995; 23: 1581 - 8.en_US
dc.identifier.citedreferenceMenendez P, Caballero MD, Prosper F, et al. The composition of leukapheresis products impacts on the hematopoietic recovery after autologous transplantation independently of the mobilization regimen. Transfusion 2002; 42: 1159 - 72.en_US
dc.identifier.citedreferenceNash RA, Gooley T, Davis C, Appelbaum FR. The problem of thrombocytopenia after hematopoietic stem cell transplantation. Oncologist 1996; 1: 371 - 80.en_US
dc.identifier.citedreferenceBenjamin RJ, Antin JH. ABO-incompatible bone marrow transplantation: the transfusion of incompatible plasma may exacerbate regiment-related toxicity. Transfusion 1999; 39: 1273 - 4.en_US
dc.identifier.citedreferenceGordon B, Tarantolo S, Ruby E, et al. Increased platelet transfusion requirement is associated with multiple organ dysfunctions in patients undergoing hematopoietic stem cell transplantation. Bone Marrow Transplant 1998; 22: 999 - 1003.en_US
dc.identifier.citedreferenceRobinson SN, Freedman AS, Neuberg DS, Nadler LM, Mauch PM. Loss of marrow reserve from dose-intensified chemotherapy results in impaired hematopoietic reconstitution after autologous transplantation: CD34(+), CD34(+)38(–), and week-6 CAFC assays predict poor engraftment. Exp Hematol 2000; 28: 1325 - 33.en_US
dc.identifier.citedreferenceKanamaru S, Kawano Y, Watanabe T, et al. Low numbers of megakaryocyte progenitors in grafts of cord blood cells may result in delayed platelet recovery after cord blood cell transplant. Stem Cells 2000; 18: 190 - 5.en_US
dc.identifier.citedreferenceFeng R, Shimazaki C, Inaba T, et al. CD34+/CD41a+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1998; 21: 1217 - 22.en_US
dc.identifier.citedreferenceDercksen MW, Rodenhuis S, Dirkson MK, et al. Subsets of CD34+ cells and rapid hematopoietic recovery after peripheral-blood stem-cell transplantation. J Clin Oncol 1995; 13: 1922 - 32.en_US
dc.identifier.citedreferenceBegemann PG, Hassan HT, Kroger N, et al. Correlation of time to platelet engraftment with amount of transplanted CD34+CD41+ cells after allogeneic bone marrow transplantation. J Hematother Stem Cell Res 2002; 11: 321 - 6.en_US
dc.identifier.citedreferenceHoffman R, Bruno E. Human megakaryocyte progenitor cells. Semin Hematol 1998; 35: 183 - 91.en_US
dc.identifier.citedreferenceBradford G, Williams N, Barber L, Bertoncello I. Temporal thrombocytopenia after engraftment with defined stem cells with long-term marrow reconstituting activity. Exp Hematol 1993; 21: 1615 - 20.en_US
dc.identifier.citedreferenceMossuz P, Schweitzer A, Molla A, Berthier R. Expression and function of receptors for extracellular matrix molecules in the differentiation of human megakaryocytes in vitro. Br J Haematol 1997; 98: 819 - 27.en_US
dc.identifier.citedreferenceRafii S, Mohle R, Shapiro F, Frey BM, Moore MA. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 1997; 27: 375 - 86.en_US
dc.identifier.citedreferenceScjick PK, Wojenski CM, He X, et al. Integrins involved in the adhesion of megakaryocytes to fibronectin and fibrinogen. Blood 1998; 92: 2650 - 6.en_US
dc.identifier.citedreferenceCooling L. ABO and human blood platelets. ADVANCE for Laboratory Administrators 2004; 13: 72 - 8.en_US
dc.identifier.citedreferenceSantoso S, Kiefel V, Mueller-Eckhardt C. Blood group A and B determinants are expressed on platelet glycoproteins IIa, IIIa, and Ib. Thromb Haemostasis 1991; 65: 196 - 201.en_US
dc.identifier.citedreferenceWickenhauser C, Schmitz A, Baldus SE, et al. Selectins (CD62L, CD62P) and megakaryocytic glycoproteins (CD41a, CD42b) mediate megakaryocyte–fibroblast interactions in human bone marrow. Leukemia Res 2000; 24: 1013 - 21.en_US
dc.identifier.citedreferenceFeng S, Christodoulides N, Kroll MH. The glycoprotein Ib/IX complex regulates cell proliferation. Blood 1999; 93: 4256 - 63.en_US
dc.identifier.citedreferenceMolla A, Mossuz P, Berthier R. Extracellular matrix receptors and the differentiation of human megakaryocytes in vitro. Leuk Lymphoma 1999; 33: 15 - 23.en_US
dc.identifier.citedreferenceIchikawa D, Handa K, Withers DA, Hakomori SI. Histo-blood group A/B versus H status of human carcinoma cells as correlated with haptotactic cell motility: approach with A and B gene transfection. Cancer Res 1997; 57: 3092 - 6.en_US
dc.identifier.citedreferenceIchikawa D, Handa K, Hakomori SI. Histo-blood group A/B antigen deletion/reduction vs. continuous expression in human tumor cells as correlated with their malignancy. Int J Cancer 1998; 76: 284 - 9.en_US
dc.identifier.citedreferenceGroupille C, Marionneau S, Bureau V, et al. Α1,2-Fucosyltransferase increases resistance to apoptosis of rat colon carcinoma cells. Glycobiology 2000; 10: 375 - 82.en_US
dc.identifier.citedreferenceCarion A, Domenech J, Herault O, et al. Decreased stroma adhesion capacity of CD34+ progenitor cells from mobilized peripheral blood is not lineage- or stage-specific and is associated with low β1 and β2 integrin expression. J Hematother Stem Cell Res 2002; 11: 491 - 500.en_US
dc.identifier.citedreferenceBendall LJ, Daniel A, Kortlepel K, Gottlieb DJ. Bone marrow adherent layers inhibit apoptosis of acute myeloid leukemia cells. Exp Hematol 1994; 22: 1252 - 60.en_US
dc.identifier.citedreferenceCummings RD, Soderquist AM, Carpenter G. The oligosaccharide moities of the epidermal growth factor receptor in A-431 cells: presence of complex-type N-linked chains that contain terminal N -acetylgalactosamine residues. J Biol Chem 1985; 260: 11944 - 52.en_US
dc.identifier.citedreferenceLe Pendu J, Fredman P, Richter ND, et al. Monoclonal antibody 101 that precipitates the glycoprotein receptor for epidermal growth factor is directed against the Y antigen, not the H type 1 antigen. Carbohydrate Res 1985; 141: 347 - 9.en_US
dc.identifier.citedreferenceEngelemann B, Schumacher U, Haen E. Epidermal growth factor binding sites on human erythrocytes in donors with different ABO blood groups. Am J Hematol 1992; 39: 239 - 41.en_US
dc.identifier.citedreferenceKong Y, Ge CH, Li H, Zhu ZM. Effects of Lewis Y oligosaccharide on secretion and gene expression of EGF and EGF-R in mouse embryos. Acta Biochim Biophys Sinica 2002; 34: 373 - 7.en_US
dc.identifier.citedreferenceDefize LH, Arndt-Jovin DJ, Jovin TM, et al. A431 cell variants lacking the blood group A antigen display increased high affinity epidermal growth factor-receptor number, protein-tyrosine kinase activity, and receptor turnover. J Cell Biol 1988; 107: 939 - 49.en_US
dc.identifier.citedreferenceKlinger M, Farhan H, Just H, et al. Antibodies directed against Lewis-Y antigen inhibit signaling of Lewis-Y modified ErbB receptors. Cancer Res 2004; 64: 1087 - 93.en_US
dc.identifier.citedreferenceKimura A, Katoh O, Kuramoto A. Effects of platelet-derived growth factor, epidermal growth factor and transforming growth factor-β on the growth of human marrow fibroblasts. Fr J Haematol 1988; 69: 9 - 12.en_US
dc.identifier.citedreferenceFeige JJ, Baird A. Glycosylation of the basic fibroblast growth factor receptor: the contribution of carbohydrate to receptor function. J Biol Chem 1988; 263: 14023 - 9.en_US
dc.identifier.citedreferenceBruno E, Cooper RJ, Wilson EL, Gabrilove JL, Hoffman R. Basic fibroblast growth factor promotes the proliferation of human megakaryocyte progenitor cells. Blood 1993; 82: 430 - 5.en_US
dc.identifier.citedreferenceAngelopoulou MK, Rinder H, Wang C, et al. A preclinical xenotransplantation animal model to assess human hematopoietic stem cell engraftment. Transfusion 2004; 44: 555 - 66.en_US
dc.identifier.citedreferenceOriol R. Tissular expression of ABH and Lewis antigens in humans and animals: expected value of different animal models in the study of ABO-incompatible organ transplants. Transplant Proc 1987; 19: 4416 - 20.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.