Show simple item record

Localization of Phosphatidylinositol 4,5-P 2 Important in Exocytosis and a Quantitative Analysis of Chromaffin Granule Motion Adjacent to the Plasma Membrane

dc.contributor.authorHolz, Ronald W.en_US
dc.contributor.authorAxelrod, Danielen_US
dc.date.accessioned2010-06-01T20:17:40Z
dc.date.available2010-06-01T20:17:40Z
dc.date.issued2002-10en_US
dc.identifier.citationHOLZ, RONALD W.; AXELROD, DANIEL (2002). "Localization of Phosphatidylinositol 4,5-P 2 Important in Exocytosis and a Quantitative Analysis of Chromaffin Granule Motion Adjacent to the Plasma Membrane." Annals of the New York Academy of Sciences 971(1 THE CHROMAFFIN CELL: TRANSMITTER BIOSYNTHESIS, STORAGE, RELEASE, ACTIONS, AND INFORMATICS: 11th INTERNATIONAL SYMPOSIUM ON CHROMAFFIN CELL BIOLOGY ): 232-243. <http://hdl.handle.net/2027.42/73413>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73413
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12438123&dopt=citationen_US
dc.description.abstractA slow ATP-dependent priming step precedes a rapid, Ca 2+ -dependent triggering step in exocytosis in chromaffin cells and in most, if not all, differentiated secretory cells. A major component of ATP-dependent secretion in permeabilized cells reflects the maintenance of the polyphosphoinositides, especially PtdIns-4,5-P2. Here we summarize recent experiments with PH-GFP (binds to PtdIns-4,5-P2) that indicate that PtdIns-4,5-P2 is localized primarily on the plasma membrane in chromaffin cells, and that it is this pool that plays a role in exocytosis. It is demonstrated that transiently expressed PH-GFP inhibits secretion in subsequently permeabilized cells. Recent studies using total internal reflection fluorescent microscopy (TIRFM) to measure chromaffin granule motion adjacent to the plasma membrane are also summarized. The quantitative analysis indicates that chromaffin granule motion is highly restricted and suggests that chromaffin granules are caged or tethered immediately adjacent to the plasma membrane.en_US
dc.format.extent4050755 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2002 New York Academy of Sciencesen_US
dc.subject.otherPhosphatidylinositol 4,5-P 2en_US
dc.subject.otherExocytosisen_US
dc.subject.otherChromaffin Granule Motionen_US
dc.subject.otherPleckstrin Homology Domainen_US
dc.subject.otherGreen Fluorescent Proteinen_US
dc.subject.otherPro-atrial Natiuretic Peptideen_US
dc.titleLocalization of Phosphatidylinositol 4,5-P 2 Important in Exocytosis and a Quantitative Analysis of Chromaffin Granule Motion Adjacent to the Plasma Membraneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pharmacology, Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationumDepartment of Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.identifier.pmid12438123en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73413/1/j.1749-6632.2002.tb04467.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2002.tb04467.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceHolz, R.W., M.A. Bittner, S.C. Peppers, et al. 1989. MgATP-independent and MgATP-dependent exocytosis. Evidence that MgATP primes adrenal chromaffin cells to undergo exocytosis. J. Biol. Chem. 264: 5412 – 5419.en_US
dc.identifier.citedreferenceBittner, M.A. & R.W. Holz. 1992. Kinetic analysis of secretion from permeabilized adrenal chromaffin cells reveals distinct components. J. Biol. Chem. 267: 16219 – 16225.en_US
dc.identifier.citedreferenceBittner, M.A. & R.W. Holz. 1992. A temperature-sensitive step in exocytosis. J. Biol. Chem. 267: 16226 – 16229.en_US
dc.identifier.citedreferenceHay, J.C. & T.F.J. Martin. 1992. Resolution of regulated secretion into sequential MgATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J. Cell Biol. 119: 139 – 151.en_US
dc.identifier.citedreferenceParsons, T.D., J.R. Coorssen, H. Horstmann & W. Almers. 1995. Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15: 1085 – 1096.en_US
dc.identifier.citedreferenceHeidelberger, R. 1998. Adenosine triphosphate and the late steps in calcium-dependent exocytosis at a ribbon synapse. J. Gen. Physiol. 111: 225 – 241.en_US
dc.identifier.citedreferenceEberhard, D.A., C.L. Cooper, M.G. Low & R.W. Holz. 1990. Evidence that the inositol phopholipids are necessary for exocytosis: loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem. J. 268: 15 – 25.en_US
dc.identifier.citedreferenceHay, J.C. & T.F.J. Martin. 1993. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca 2+ -activated secretion. Nature 366: 572 – 575.en_US
dc.identifier.citedreferenceHay, J.C., P.L. Fisette, G.H. Jenkins, et al. 1995. ATP-dependent inositide phosphorylation required for Ca 2+ -activated secretion. Nature 374: 173 – 177.en_US
dc.identifier.citedreferenceDe Camilli, P., S.D. Emr, P.S. McPherson & P. Novick. 1996. Phosphoinositides as regulators of membrane traffic. Science 271: 1533 – 1539.en_US
dc.identifier.citedreferenceWiedemann, C., T. Schafer, M.M. Burger & T.S. Sihra. 1998. An essential role for a small synaptic vesicle-associated phosphatidylinositol 4-kinase in neurotransmitter release. J. Neurosci. 18: 5594 – 5602.en_US
dc.identifier.citedreferenceKhvotchev, M. & T.C. Sudhof. 1998. Newly synthesized phosphatidylinositol phosphates are required for synaptic norepinephrine but not glutamate or gamma-aminobutyric acid (GABA) release. J. Biol. Chem. 273: 21451 – 21454.en_US
dc.identifier.citedreferenceSorensen, S.D., D.A. Linseman, E.L. McEwen, et al. 1999. A role for a wortmannin-sensitive phosphatidylinositol-4-kinase in the endocytosis of muscarinic cholinergic receptors. J. Pharmacol. Exp. Ther. 52: 827 – 836.en_US
dc.identifier.citedreferenceSchu, P.V., K. Takegawa, M.J. Fry, et al. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260: 88 – 91.en_US
dc.identifier.citedreferenceWurmser, A.E., J.D. Gary & S.D. Emr. 1999. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J. Biol. Chem. 274: 9129 – 9132.en_US
dc.identifier.citedreferenceHokin, L. & M.R. Hokin. 1964. The incorporation of 32 P from triphosphate into polyphosphoinositides [Γ- 32 P]adenosine and phsophatidic acid in erythrocyte membranes Biochim. Biophys. Acta 84: 563 – 575.en_US
dc.identifier.citedreferenceEichberg, J. & R.M.C. Dawson. 1965. Polyphosphoinositides in myelin. Biochem. J. 96: 644 – 650.en_US
dc.identifier.citedreferenceWhipps, D.E., A.E. Armston, H.J. Pryor & A.P. Halestrap. 1987. Effects of glucagon and Ca 2+ on the metabolism of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate in isolated rat hepatocytes and plasma membranes. Biochem. J. 241: 835 – 845.en_US
dc.identifier.citedreferenceBuckley, J.T., Y.A. Lefebvre & J.N. Hawthorne. 1971. Identification of an actively phosphorylated component of adrenal medulla chromaffin granules. Biochim. Biophys. Acta 239: 517 – 519.en_US
dc.identifier.citedreferencePhillips, J.H. 1973. Phosphatidylinositol kinase. Biochem. J. 136: 579 – 587.en_US
dc.identifier.citedreferenceMuller, T.W. & N. Kirshner. 1975. ATPase and phosphatidylinositol kinase activities of adrenal chromaffin vesicles. J. Neurochem. 24: 1155 – 1161.en_US
dc.identifier.citedreferenceHusebye, E.S. & T. Flatmark. 1988. Phosphatidylinositol kinase of bovine adrenal chromaffin granules: kinetic properties and inhibition by low concentrations of Ca 2+. Biochim. Biophys. Acta 968: 261 – 265.en_US
dc.identifier.citedreferenceKurosawa, M. & C. Parker. 1986. A phosphatidylinositol kinase in rat mast cell granules. J. Immunol. 136: 616 – 622.en_US
dc.identifier.citedreferenceLemmon, M.A., K.M. Ferguson & J. Schlessinger. 1996. PH domains: diverse sequences with a common fold recruit signaling molecules to the cell surface. Cell 85: 621 – 624.en_US
dc.identifier.citedreferenceRebecchi, M.J. & S. Scarlata. 1998. Pleckstrin homology domains: a common fold with diverse functions. Annu. Rev. Biophys. Biomol. Struct. 27: 503 – 528.en_US
dc.identifier.citedreferencePaterson, H.F., J.W. Savopoulos, O. Perisic, et al. 1995. Phospholipase C delta 1 requires a pleckstrin homology domain for interaction with the plasma membrane. Biochem. J. 312: 661 – 666.en_US
dc.identifier.citedreferenceLemmon, M.A., K.M. Ferguson, R. O'Brien, et al. 1995. Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc. Natl. Acad. Sci. USA 92: 10472 – 10476.en_US
dc.identifier.citedreferenceRebecchi, M., A. Peterson & S. McLaughlin. 1992. Phosphoinositide-specific phospholipase C-delta 1 binds with high affinity to phospholipid vesicles containing phosphatidylinositol 4,5-bisphosphate. Biochemistry 31: 12742 – 12747.en_US
dc.identifier.citedreferenceRebecchi, M., V. Boguslavsky, L. Boguslavsky & S. McLaughlin. 1992. Phosphoinositide-specific phospholipase C-delta 1: effect of monolayer surface pressure and electrostatic surface potentials on activity. Biochemistry 31: 12748 – 12753.en_US
dc.identifier.citedreferenceFerguson, K.M., M.A. Lemmon, J. Schlessinger & P.B. Sigler. 1995. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 83: 1037 – 1046.en_US
dc.identifier.citedreferenceVarnai, P. & T. Balla. 1998. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[ 3 H]inositol-labeled phosphoinositide pools J. Cell Biol. 143: 501 – 510.en_US
dc.identifier.citedreferenceStauffer, T.P., S. Ahn & T. Meyer. 1998. Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P 2 concentration monitored in living cells. Curr. Biol. 8: 343 – 346.en_US
dc.identifier.citedreferenceHolz, R.W., M.D. Hlubek, S.D. Sorensen, et al. 2000. A pleckstrin homology domain specific for PtdIns-4-5-P 2 and fused to green fluorescent protein identifies plasma membrane PtdIns-4-5-P 2 as being important in exocytosis. J. Biol. Chem. 275: 17878 – 17885.en_US
dc.identifier.citedreferenceSchacht, J. 1976. Inhibition by neomycin of polyphosphoinositide turnover in subcellular fractions of guinea-pig cerebral cortex in vitro. J. Neurochem. 27: 1119 – 1124.en_US
dc.identifier.citedreferenceSchacht, J. 1978. Purification of polyphosphoinositides by chromatography on immobilized neomycin. J. Lipid Res. 19: 1063 – 1067.en_US
dc.identifier.citedreferenceGabev, E., J. Kasianowicz, T. Abbott & S. McLaughlin. 1989. Binding of neomycin to phosphatidylinositol 4,5-bisphosphate (PIP2). Biochim. Biophys. Acta 979: 105 – 112.en_US
dc.identifier.citedreferenceMicheva, K.D., R.W. Holz & S.J. Smith. 2001. Regulation of presynaptic phosphatidylinositol 4,5-bisphosphate by neuronal activity. J. Cell Biol. 154: 355 – 368.en_US
dc.identifier.citedreferenceCremona, O., G. Di Paolo, M.R. Wenk, et al. 1999. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99: 179 – 188.en_US
dc.identifier.citedreferenceSchiavo, G., Q.-M. Gu, G.D. Prestwich, et al. 1996. Calcium-dependent switching of the specificity of phosphoinositide binding to synaptotagmin. Proc. Natl. Acad. Sci. USA 93: 13327 – 13332.en_US
dc.identifier.citedreferenceChung, S.-H., W.-J. Song, K. Kim, et al. 1998. The C2 domains of Rabphilin3a specifically bind PtdIns(4,5)P 2 -containing vesicles in a Ca 2+ -dependent manner: characteristics and possible physiological significance. J. Biol. Chem. 273: 10240 – 10248.en_US
dc.identifier.citedreferenceLoyet, K.M., J.A. Kowalchyk, A. Chaudhary, et al. 1998. Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J. Biol. Chem. 273: 8337 – 8343.en_US
dc.identifier.citedreferenceNakata, T. & N. Hirokawa. 1992. Organization of cortical cytoskeleton of cultured chromaffin cells and involvement in secretion as revealed by quick-freeze, deep-etching, and double-label immunoelectron microscopy. J. Neurosci. 12: 2186 – 2197.en_US
dc.identifier.citedreferenceMartin, T.F. 1997. Phosphoinositides as spatial regulators of membrane traffic. Curr. Opin. Neurobiol. 7: 331 – 338.en_US
dc.identifier.citedreferenceSteyer, J.A., H. Horstman & W. Almers. 1997. Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388: 474 – 478.en_US
dc.identifier.citedreferenceOheim, M., D. Loerke, W. Stuhmer & R.H. Chow. 1998. The last few milliseconds in the life of a secretory granule. Docking, dynamics and fusion visualized by total internal reflection fluorescence microscopy (TIRFM). Eur. J. Biophys. 27: 83 – 98.en_US
dc.identifier.citedreferenceOheim, M., D. Loerke, W. Stuhmer & R.H. Chow. 1999. Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur. J. Biophys. 28: 91 – 101.en_US
dc.identifier.citedreferenceOheim, M. & W. Stuhmer. 2000. Tracking chromaffin granules on their way through the actin cortex. Eur. J. Biophys. 29: 67 – 89.en_US
dc.identifier.citedreferenceAxelrod, D. 1981. Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89: 141 – 145.en_US
dc.identifier.citedreference49 Axelrod, D. 2001. Total internal reflection fluorescence microscopy. In Methods in Cellular Imaging. A. Perisamy, Ed.: 362-380. Oxford University Press. Oxford, UK.en_US
dc.identifier.citedreferenceSteyer, J.A. & W. Almers. 1999. Tracking single secretory granules in live chromaffin cells by evanscent-field fluorescence microscopy. Biophys. J. 76: 2262 – 2271.en_US
dc.identifier.citedreferenceJohns, L.M., E.S. Levitan, E.S. Shelden, et al. 2001. Restriction of secretory granule motion near the plasma membrane of chromaffin cells. J. Cell Biol. 153: 177 – 190.en_US
dc.identifier.citedreferenceBurke, N.V., W. Han, D. Li, et al. 1997. Neuronal peptide release is limited by secretory granule mobility. Neuron 19: 1095 – 1102.en_US
dc.identifier.citedreferenceLang, T., I. Wacker, I. Wunderlich, et al. 2000. Role of actin cortex in the subplasmalemmal transport of secretory granules in PC-12 cells. Biophys. J. 78: 2863 – 2877.en_US
dc.identifier.citedreferenceOheim, M. & W. Stuhmer. 2000. Tracking chromaffin granules on their way through the actin cortex. Eur. J. Biophys. 29: 67 – 89.en_US
dc.identifier.citedreferenceWick, P.W., R.A. Senter, L.A. Parsels & R.W. Holz. 1993. Transient transfection studies of secretion in bovine chromaffin cells and PC12 cells: generation of kainate-sensitive chromaffin cells. J. Biol. Chem. 268: 10983 – 10989.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.