Show simple item record

Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis

dc.contributor.authorLópez, Juan F.en_US
dc.contributor.authorVazquez, Delia M.en_US
dc.contributor.authorChalmers, Derek T.en_US
dc.contributor.authorWatson, Stanley J.en_US
dc.date.accessioned2010-06-01T20:19:11Z
dc.date.available2010-06-01T20:19:11Z
dc.date.issued1997-12en_US
dc.identifier.citationLÓPEZ, JUAN F.; VÁZQUEZ, DELIA M.; CHALMERS, DEREK T.; WATSON, STANLEY J. (1997). "Regulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axis." Annals of the New York Academy of Sciences 836(1 Neurobiology of Suicide, The : From the Bench to the Clinic ): 106-134. <http://hdl.handle.net/2027.42/73437>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73437
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9616796&dopt=citationen_US
dc.description.abstractDisturbances in the serotonin (5-HT) system is the neurobiological abnormality most consistently associated with suicide. Hyperactivity of the hypothalmic-pituitary-adrenal (HPA) axis is also described in suicide victims. The HPA axis is the classical neuroendocrine system that responds to stress and whose final product, corticosteroids, targets components of the limbic system, particularly the hippocampus. We will review resulsts from animal studies that point to the possibility that many of the 5-HT receptor changes observed in suicide brains may be a result of, or may be worsened by, the HPA overactivity that may be present in some suicide victims. The results of these studies can be summarized as follows: (1) chronic unpredictable stress produces high corticosteroid levels in rats; (2) chronic stress also results in changes in specific 5-HT receptors (increases in cortical 5-HT2A and decreases in hipocampal 5-HT1A and 5-HT1B); (3) chronic antidepressant administration prevents many of the 5-HT receptor changes observed after stress; and (4) chronic antidepressant administration reverses the overactivity of the HPA axis. If indeed 5-HT receptors have a partial role in controlling affective states, then their modulation by corticosteroids provides a potential mechanism by which these hormones may regulate mood. These data may also provide a biological understanding of how stressful events may increase the risk for suicide in vulnerable individuals and may help us elucidate the neurobiological underpinnings of treatment resistance.en_US
dc.format.extent2112951 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1997 The New York Academy of Sciencesen_US
dc.titleRegulation of 5-HT Receptors and the Hypothalamic-Pituitary-Adrenal Axisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Pediatrics, Endocrinology Division, University of Michigan Medical Center, Ann Arbor, Michiganen_US
dc.contributor.affiliationotherDepartment of Psychiatry, Mental Health Research Instituteen_US
dc.contributor.affiliationotherArena Pharmaceuticals, San Diego, Californiaen_US
dc.identifier.pmid9616796en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73437/1/j.1749-6632.1997.tb52357.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1997.tb52357.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceMann, J.J. 1987. Psychobiologic predictors of suicide. J. Clin. Psychiatry 48 Suppl.: 39 – 43.en_US
dc.identifier.citedreferenceMann, J.J., V. Arango, P.M. Marzuk, S. Theccanat & D.J. Reis. 1989. Evidence for the 5-HT hypothesis of suicide: A review of post-mortem studies. Br. J. Psychiatry 155: 7 – 14.en_US
dc.identifier.citedreferenceLÓpez, J.F., M. Palkovits, M. Arato, A. Mansour, H. Akil & S.J. Watson. 1992. Localization and quantification of pro-opiomelanocortin mRNA and glucocorticoid receptor mRNA in pitutiaries of suicide victims. Neuroendocrinology 56: 491 – 501.en_US
dc.identifier.citedreferenceDorovini-Zis, K. & A.P. Zis. 1987. Increased adrenal weight in victims of violent suicide. Endocrinology 144: 1214 – 1215.en_US
dc.identifier.citedreferenceArato, M., C.M. Banki, G. Bissette & C.B. Nemeroff. 1989. Elevated CSF CRF in suicide victims. Biol. Psychiatry 25: 355 – 359.en_US
dc.identifier.citedreferenceChalmers, D.T., J.F. LÓpez, H. Akil & S.J. Watson. 1993. Molecular Aspects of the Stress Axis and Serotonergic Function in Depression. Clin. Neurosci. 1: 122 – 128.en_US
dc.identifier.citedreferenceMelzter, H. 1989. Serotonergic dysfunction in depression. Br. J. Psychiatry 155: 25 – 31.en_US
dc.identifier.citedreferenceClayton, P.J. 1985. Suicide. Psychiatr. Clin. N. Am. 8: 203 – 214.en_US
dc.identifier.citedreferenceMonk, M. 1987. Epidemiology of suicide. Epidemiol. Rev. 9: 51 – 69.en_US
dc.identifier.citedreferenceLÓpez, J.F., E.A. Young, J.P. Herman, H. Akil & S.J. Watson. 1991. Regulatory Biology of the HPA Axis: An Integrative Approach. American Psychiatric Press, Inc. Washington, D.C.en_US
dc.identifier.citedreferenceHerman, J.P., M.K.-H. Shafer, E.A. Young, R. Thompson, J. Douglass, H. Akil & S.J. Watson. 1989. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo-pituitary-adrenocortical axis. J. Neurosci. 9: 3072 – 3082.en_US
dc.identifier.citedreferenceHerman, J.P., W.E. Cullinan, M.I. Morano, H. Akil & S.J. Watson. 1995. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamic-pituitary-adrenal axis. J. Neuroendocrinol. 7: 475 – 482.en_US
dc.identifier.citedreferenceHerman, J.P., D. Adams & C. Prewitt. 1995. Regulatory changes in neuroendocrine stress-integrative circuitry produced by a variable stress paradigm. Neuroendocrinology 61: 180 – 190.en_US
dc.identifier.citedreferenceLÓpez, J.F., D.M. VÁzquez, H. Akil & S.J. Watson. 1994. Effect of imipramine administration and swim stress on the hypothalamic pituitary adrenal axis. Endocrine 2: 723 – 728.en_US
dc.identifier.citedreferenceYoung, E.A., R.F. Haskett, V. Murphy-Weinberg, S.J. Watson & H. Akil. 1991. Loss of glucocorticoid fast feedback in depression. Arch. Gen. Psychiatry 48: 693 – 699.en_US
dc.identifier.citedreferenceYoung, E.A., H. Akil, R.F. Haskett & S.J. Watson. 1995. Evidence against changes in corticotroph CRF receptors in depressed patients. Biol. Psychiatry 37: 355 – 363.en_US
dc.identifier.citedreferenceCarroll, B.J., G.C. Curtis & J. Mendels. 1976. Neuroendocrine regulation in depression I. Limbic system-adrenocortical dysfunction. Arch. Gen. Psychiatry 33: 1039 – 1044.en_US
dc.identifier.citedreferenceGold, P.W., F.K. Goodwin & G.P. Chrousos. 1988. Clinical and biochemical manifestations of depression. Relation to the neurobiology of stress (second of two parts). N. Engl. J. Med. 319: 413 – 420.en_US
dc.identifier.citedreferenceKathol, R.G., R.S. Jaeckel, J.F. LÓpez & W.H. Meller. 1989. Pathophysiology of HPA axis abnormalities in patients with major depression: an update. Am. J. Psychiatry 146: 311 – 317.en_US
dc.identifier.citedreferenceDe Souza, E.B., T.R. Insel, M.H. Perrin, J. Rivier, W.W. Vale & M.J. Kuhar. 1985. Differential regulation of corticotropin-releasing factor receptors in anterior and intermediate lobes of pituitary and brain following adrenalectomy in rats. Neurosci. Lett. 56: 121 – 128.en_US
dc.identifier.citedreferenceCross, C.K. & R.M.A. Hirschfeld. 1986. Psychosocial factor and suicidal behavior: Life events, early loss, and personality. Ann. N.Y. Acad. Sci. 487: 77 – 89.en_US
dc.identifier.citedreferenceDooley, D., R. Catalano, K. Rook & S. Serxner. 1989. Economic stress and suicide: multilevel analyses. Part 2: Cross-level analyses of economic stress and suicidal ideation. Suicide Life Threatening Behav. 19: 337 – 351.en_US
dc.identifier.citedreferenceLuscomb, R.L., G.A. Clum & A.T. Patsiokas. 1980. Mediating factors in the relationship between life and stress and suicide attempting. J. Nerv. Ment. Dis. 168: 644 – 650.en_US
dc.identifier.citedreferenceJosepho, S.A. & R. Plutchik. 1994. Stress, coping, and suicide risk in psychiatric impatients. Suicide Life Threatening Behav. 24: 48 – 57.en_US
dc.identifier.citedreferenceKlerman, G.L. 1987. Clinical epidemiology of suicide. J. Clin. Psychiatry 48 Suppl.: 33 – 38.en_US
dc.identifier.citedreferencePaykel, E.S. 1976. Life stress, depression and attempted suicide. J. Hum. Stress 2: 3 – 12.en_US
dc.identifier.citedreferenceNorman, W.H., W.A. Brown, I.W. Miller, G.I. Keitner & J.C. Overholser. 1990. The dexamethasone suppression test and completed suicide. Acta Psychiatr. Scand. 81: 120 – 125.en_US
dc.identifier.citedreferenceRoy, A. 1992. Hypothalamic-pituitary-adrenal axis function and suicidal behavior in depression. Biol. Psychiatry 32: 812 – 816.en_US
dc.identifier.citedreferenceSzigethy, E., Y. Conwell, N.T. Forbes, C. Cox & E.D. Caine 1994. Adrenal weight and morphology in victims of completed suicide. Biol. Psychiatry 36: 374 – 380.en_US
dc.identifier.citedreferenceNemeroff, C.B., M.J. Owens, G. Bissette, A.C. Andorn & M. Stanley. 1988. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch. Gen. Psychiatry 45: 577 – 579.en_US
dc.identifier.citedreferenceCurzon, G. M.H. Joseph & P.J. Knott 1972. Effect of immobilization and food deprivation on rat brain typtophan hydroxylase. J. Neurochem. 19: 1967 – 1974.en_US
dc.identifier.citedreferenceVan Loon, G.R., A. Shum, M.J. Sole 1981. Decreased brain serotonin turnover after short term (two hour) adrenalectomy in rats: a comparison of four turnover methods. Endocrinology 108: 1392 – 1492.en_US
dc.identifier.citedreferenceSingh, V.B., K.C. Corley, T.H. Phan & M. Boadle-Biber. 1990. Increases in the activity of tryptophan hydroxylase from rat cortex and midbrain in response to acute or repeated sound stress and blocked by adrenalectomy and restored by dexamethasone treatment. Brain Res. 516: 66 – 76.en_US
dc.identifier.citedreferenceBiegon, A., T.C. Raibow & B.S. McEwen. 1985. Corticosterone modulation of neurotransmitter receptors in rat hippocampus: a quantitative autoradiographic study. Brain Res. 332: 309 – 314.en_US
dc.identifier.citedreferencede Kloet, E.R., H. Sybesma & J.M.H.M. Reul. 1986. Selective control by corticosterone of serotonin 1 receptor capacity in raphe-hippocampal system. Neuroendocrinology 42: 513 – 521.en_US
dc.identifier.citedreferenceJoels, M., W. Hesen & E.R. de Kloet 1991. Mineralocorticoid hormones suppress serotonin-induced hyperpolarization of rat hippocampal CA1 neurons. J. Neurosci 11: 2288 – 2294.en_US
dc.identifier.citedreferenceYamamoto, K.R. 1985. Steroid receptor regulated transcription of specific genes and gene networks. 19: 209 – 252.en_US
dc.identifier.citedreferenceReul, J.M.H.M. & E.R. de Kloet 1985. Two receptor systems for corticosterone in rat brain; microdistribution and differential occupation. Endocrinology 117: 2505 – 2511.en_US
dc.identifier.citedreferenceSarrieau, A., M. Vial, D. Philbert & W. Rostene. 1984. in vitro autoradiographic localization of 3H-corticosterone binding sites in rat hippocampus. Eur. J. Pharmacol. 98: 151 – 152.en_US
dc.identifier.citedreferenceFuxe, K., A.C. Okret, L.F. Agnati, A. Harfstrand, Z.Y. Yu, L. Granholm 1985. Mapping of glucocorticoid receptor immunoreactive neurons in the rat tel-and diencephalon using a monoclonal antibody against rat liver glucocorticoid receptors. Endocrinology 117: 1803 – 1812.en_US
dc.identifier.citedreferenceHerman, J.P., P.D. Patel, H. Akil & S.J. Watson. 1989. Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol. 3: 1886 – 1894.en_US
dc.identifier.citedreferenceIsaacson, R.L. 1974. The limbic System. Plenum Press. New York.en_US
dc.identifier.citedreferenceHall, M.D., S.E. Mestikawy, M.B. Emerit, L. Pichat, M. Hamon & H. Gozlan. 1985. [3H] 8-hydroxy-2-(din-n-propylamino)tetralin binding to pre-and post-synaptic 5-hydroxytryptamine sites in various rregions of the rat brain. J. Neurochem. 44: 1685 – 1696.en_US
dc.identifier.citedreferenceBlier, P., C. De Montigny & Y. Chaput. 1988. Electrophysiological assessment of the effects of antidepressant treatments on the efficacy of 5-HT neurotransmission. Clin. Neuropharmaco. 11: S1 – S1.en_US
dc.identifier.citedreferenceWelner, S.A., C.D. Montigny, J. Desroches, P. Desjardins & B. E. Suranyi-Cadotte 1989. Autoradiographic Quatification of Serotonin 1A receptors in rat brain following antideprresant drug treatment. Synapse 4: 347 – 352.en_US
dc.identifier.citedreferenceDe Montigny, C., Y. Chaput & P. Blier. 1990. Modification of serotonergic neuron properties by long-term treatment with serotonin reuptake blockers J. Clin. Psychiatry, 51 Suppl. B: 4 – 8.en_US
dc.identifier.citedreferenceRickels, K. 1990. Buspirone in clinical practice. J. Clin. Psychiatry 51: 51 – 54.en_US
dc.identifier.citedreferenceFabre, L.F. 1990. Buspirone in the management of major depression: a placebo-controlled comparison. J. Clin. Psychiatry 51: 55 – 61.en_US
dc.identifier.citedreferenceRobinson, D.S., K. Rickels, J. Feighner, L.F.J. Fabre, R.E. Gammans, R.C. Shrotriya, D.R. Alms, J.J. Adnary & M.E. Messina. 1990. Clinical effects of the 5-HT1A partial agonists in depression: a composite analysis of buspirone in the treatment of depression. J. Clin. Psychopharmacol. 10: 67S – 76S.en_US
dc.identifier.citedreferenceJacobsen, F.M. 1991. Possible augmentation of antidepressant response by buspirone. J. Clin. Psychiatry 52: 217 – 220.en_US
dc.identifier.citedreferencePalacios, J.M., A. Pazos & D. Hoyer. 1987. Characterization and Mapping of 5-Ht1A Sites in the Brain of Animals and Man. Ellis Horwood. Chichester, England.en_US
dc.identifier.citedreferenceChalmers, D.T. & S.J. Watson 1991. Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain-a combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res. 561: 51 – 60.en_US
dc.identifier.citedreferenceMendelson, S.D. & B.S. McEwen. 1990. Adrenalectomy increases the density of 5-HT1A receptors in rat hippocampus. Neuroendocrinol. Lett. 12: 353.en_US
dc.identifier.citedreferenceChalmers, D.T., J.F. Lapez, D.M. VÀpez, D.M. VÀzuez, H. Akil & S.J. Watson. 1994. Regulation of Hippocampal 5-HT1A Receptor Gene Expression by Dexamethasone. Neuropsychopharmacology 10: 215 – 22.en_US
dc.identifier.citedreferenceLÀpez, J.F. 1994. Serotonin receptor regulation in chronic unprdictable stress: An animal model of deperssion ? Neuropsychopharmacology [Abstract] 10 Suppl: 751S.en_US
dc.identifier.citedreferenceLÀpez, J.F., D. Chalmers, K.Y. Little & Watson & S.J. Watson. 1997. Regulation of 5 HT1 a receptor, glucocorticoid and mineralocorticoid receptor in rat and human hippocampus: Implications for the neurobiology of depression. Biol. Psychiatry. In press.en_US
dc.identifier.citedreferenceChalmers, D.T., S.P. Kwak, A. MansÀur, H. Akil & S.J. Watson. 1992. Corticosteroids regulate brain hippocampal 5-HT1A receptor mRNA expression. J. Neurosci. 13: 914 – 923.en_US
dc.identifier.citedreferenceMeijer, O.C. & E.R. de Kloet 1994. Corticosterone suppresses the expression of 5-HT1A receptor mRNA in rat dentate gyrus. Eur. J. Pharmacol. 266: 255 – 261.en_US
dc.identifier.citedreferenceKuroda, Y., Y. Watanabe, D.S. Albeck, N.B. Hastings & B.S. McEwen. 1994. Effects of adrenalectomy and type I or type II glucocorticoid receptor activation on 5-HT1A and 5-HT2 receptor binding and 5-HT transporter mRNA expression in rat brain. Brain. Res. 648: 157 – 16.en_US
dc.identifier.citedreferenceKatz, R.J. & M. Sibel. 1982. Animal Model of depression: tests of three structurally and pharmacologically novel antidepressant compounds. Pharmacol. Biochem. Behav. 16: 973 – 977.en_US
dc.identifier.citedreferenceChappell, P.B., M.A. Smith, C.D. Kilts. G. Bissette J. Ritchie, C. Anderson & C.B. Nemeroff. 1986. Alterations in corticotropin-releasing factor-like immunoreactivity in discreate rat brain regions after acute and chronic strees. J. Neurosci. 6: 2908 – 2914.en_US
dc.identifier.citedreferenceArmario, A., C. Restrepo & A. Lopez-Calderon. 1988. Effect of a chronic stress model of depression on basal and acute stress levels of LH and Prolactin in adult male rats. Biol. Psychiatry 24: 447 – 450.en_US
dc.identifier.citedreferenceBrady, L.S., H.J. Whitfield, R.J. Fox, P.W. Gold & M. Herkenham. 1991. Long-term antidepressant administration alters corticotropin-releasing hormone tyrosine hydroxylase, and mineralocorticoid receptor gene expression in rat brain. J. Clin. Invest. 87: 831 – 837.en_US
dc.identifier.citedreferenceWatanabe, Y. R.R. Sakai, B.S. McEwen & S. Mendelson. 1993. Stress and antidepressant effects on hippocampal and cortical 5-HT1A and 5-HT2 receptors and transport sites for serotonin. Brain Res. 615: 87 – 94.en_US
dc.identifier.citedreferenceMcEwen, B.S. 1987. Glucocorticoid-biogenic amine interactions in relation to mood and behavior. Biochem. Pharmacol. 36: 1755 – 1763.en_US
dc.identifier.citedreferenceBowen, D.M., A. Najlerahim, A. W. Procter, P.T. Francis & E. Murphy. 1989. Circumscribed changes of the cerebral cortex in neuropsychiatric disorder of later life. Proc. Natl. Acad. Sci. USA 86: 9504 – 9508.en_US
dc.identifier.citedreferenceSapolsky, R.M., L.C. Krey & B.S. McEwen. 1986. The neuroendocrinology of stress and aging: The glucocorticoid cascade hyposthesis. Endocr. Rev. 7: 284 – 301.en_US
dc.identifier.citedreferenceVerge, D., G. Davel, M. Marcinkiewicz, A. Patey, S. El Mestikawy, H. Gozian & M. Haamon. 1986. Quantitative autoradiography of miltiple 5-HT1 receptor subtypes in the brain of control or 5,7 dihydroxytryptamine treated rats, J. Neurosci. 6: 3474 – 3482.en_US
dc.identifier.citedreferenceHensler, J.G., G.B. Kovachich & A. Frazer. 1991. A quantitative autoradiographic study of serotonin 1A receptor. Effects of 5,7-dihydroxytryptamine and antidepressant treatments. Neuropsychopharm. 4: 131 – 144.en_US
dc.identifier.citedreferenceBrousseau, D., S. Wieland, I. Lucki & P. McGonigle. 1991. 5-HT depletion alters the levels of 5-HT1A receptor mRNA. Soc. Neurosci. Abstr. 21: 719.en_US
dc.identifier.citedreferenceMeltzer, H.Y. 1988. Role of serotonin in depression. Psychopharmacology 96: 134.en_US
dc.identifier.citedreferenceArango, V., M.D. Underwood, A.V. Gubbi & J.J. Mann. 1995. Localized alterations in pre-and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res. 688: 121 – 133.en_US
dc.identifier.citedreferenceArango, V., P. Ernsberger, P.M. Marzuk, J.S. Chen, H. Tierney, M. Stanley, D.J. Reiss & J.J. Mann. 1990. Autoradiographic demonstration of increased serotonin 5-HT 2 and ß-adrenergic receptor binding sites in the brain of suicide victims. Arch. Gen. Psychiatry 47: 1038 – 1047.en_US
dc.identifier.citedreferenceSaudou, F., D. Ait Amara, A. Dierich, M. Lemeur, S. Ramboz, L. Segu, M-C. Buhot & R. Hen. 1994. Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265: 1875 – 1878.en_US
dc.identifier.citedreferenceRamboz, S., F. Saudou, D.A. Amara, C. Belzung, L. Segu, R. Misslin, R. M-C. Buhot & R. Hen. 1996. 5-HT1B receptor knock out-behavioral consequences. Behav. Brain Res. 73: 305 – 312.en_US
dc.identifier.citedreferenceMos, J., B. Olivier & M. Th. M. Tulp 1992. Ethopharmacological studies differentiate the effects of various serotonergic compounds on aggression in rats. Drug Dev. Res. 26: 343 – 360.en_US
dc.identifier.citedreferenceSaudou, F. & R. Hen. 1994. 5-Hydroxytrptamine receptor subtypes: molecular and functional diversity. Adv. Pharmacol. 30: 327 – 380.en_US
dc.identifier.citedreferenceSijbesma, H., J. Schipper & E.R. de Kloet 1990. The anti-aggressive drug eltoprazine preferentially binds to 5-HT1A and 5-HT1B receptor subtypes in rat brain: sensitivity to guanine nucleotides. Eur. J. Pharmacol. 187: 209 – 223.en_US
dc.identifier.citedreferenceSijbesma, H., J. Schipper, E.R. de Kloet, J. Mos, H. van Aken & B. Olivir. 1991. Postsynaptic 5-HT1 receptors and offensive aggression in rats: a combined behavioural and autoradiographic study with eltoprazine. Pharmacol. Biochem. Behav. 38: 447 – 458.en_US
dc.identifier.citedreferenceCoccaro, E.F. 1989. Central serotonin and impulsive aggression. Br. J. Psychiatry 155 Suppl. 52 – 62.en_US
dc.identifier.citedreferenceMendelson, S.D. & B.S. McEwen. 1992. Autoradiographic analyses of the effects of adrenalectomy and corticosterone on 5-HT1A and 5-HT1B receptors in the dorsal hippocampus and cortex of the rat. Neuroendocrinology 55: 444 – 450.en_US
dc.identifier.citedreferenceAÏt Amara, D., L. Segu, S. NaÏli & M-C. Buhot 1995. Serotonin 1B receptor regulation after dorsal subiculum deafferentation. Brain Res. Bull. 38: 17 – 23.en_US
dc.identifier.citedreferenceMann, J., J. M. Stanley & P.A. McBride. 1986. Increased serotonin 2 and betadrenergic receptor binding in the frontal cortex of suicide victims. Arch. Gen. Psychiatry 43: 954 – 959.en_US
dc.identifier.citedreferenceArango, V., M.D. Underwood & J.J. Mann. 1992. Alterations in monoamine receptors in the brain of suicide victims. J. Clin. Psychopharmacol. 12 ( 2 Suppl. ): 8S – 12S.en_US
dc.identifier.citedreferenceHiedina, P.D., E. Demeter, T.B. VU, P. SOTONYI & M. Palkovits. 1993. 5-HT uptake sites and 5-HT 2 sites in cortex and amygdala. Brain Res. 614: 37 – 44.en_US
dc.identifier.citedreferencePeroutka, S.J. & S.H. Snyder. 1980a. Long-term antidepressant treatment decreases spiroperiodol-labelled serotonin receptor binding. Science 210: 88 – 90.en_US
dc.identifier.citedreferencePeroutka, S.J. & S.H. Snyder. 1980b. Regulation of serotonin 2 (5-HT2) receptors labeled with 3H-spiroperidol by chronic treatment with the antidepresant amitruptyline. J. Pharmacol. Exp. Ther. 215: 582 – 587.en_US
dc.identifier.citedreferenceMcKittrick, C.R., D.C. Blanchard, R.J. Blanchard, B.S. McEwen & R.R. Sakai. 1995. Serotonin receptor binding in a colony model of chronic social stress. Biol. Psychiatry 37: 383 – 396.en_US
dc.identifier.citedreferenceKuroda, Y. M. Mikuni, T. Ogawa & K. Takahashi. 1992. Effect of ACTH, adrenalectomy and the combination treatment on the density of 5-HT2 receptor binding sites in neocortex of rat forebrain and 5-HT2 receptor-mediated wet-dog shake behaviors. Psychopharmacol. (Berl.) 108 ( 1–2 ): 27 – 32.en_US
dc.identifier.citedreferenceKuroda, Y., M. Mikuni, N. Nomura & K. Takahashi. 1993. Differential effect of subchronic dexamethasone treatment on serotonin-2 and beta-adrenergic receptors in the rat cerebral cortex and hippocampus. Neurosci. Lett. 155: 195 – 198.en_US
dc.identifier.citedreferenceBaker, G.B. & A.J. Greenshaw. 1988. Effects of long-term administration of antidepresants and neuroleptics on receptors in the Central Nevous System. Cell. Mol. Neurobiol. 9: 1 – 44.en_US
dc.identifier.citedreferenceLucki, I. 1991. Behavioral studies of serotonin receptor agonists as antidepressant drugs. J. Clin. Psychiatry 52: 24 – 31.en_US
dc.identifier.citedreferenceLÓpez, J.F., D.T. Chalmers, D.M. Vjagzquez, S.J. Watson & H. Akil. 1994. Serotonin transporter mRNA in rat brain is regulated by classical antidepressants. Biol. Psychiatry 35: 287 – 290.en_US
dc.identifier.citedreferenceSlotkin, T.A., E.C. McCook, J.C. Ritchie & F.J. Seidler. 1996. Do glucocorticoids contribute to the abnormalities in serotonin transporter expression and function seen in depression? An animal model. Biol. Psyclulatry 40: 576 – 584.en_US
dc.identifier.citedreferenceBenjaminsen, S., G. Krarup & R. Lauritsen. 1990. Personality, parental rearing behaviour and parental loss in attempted suicide: a comparative study. Acta Psychiatr. Scand. 82: 389 – 397.en_US
dc.identifier.citedreferenceBotsis, A.J., R. Plutchik, M. Kotler & H.M. van Praag 1995. Parental loss and family violence as correlates of suicide and violence risk. Suicide Life Threatening Behav. 25: 253 – 260.en_US
dc.identifier.citedreferenceBron, B., M. Strack & G. Rudolph. 1991. Childhood experiences of loss and suicide attempts: significance in depressive states of major depressed and dysthymic or adjustment disordered patients. J. Affective Disord. 23: 165 – 172.en_US
dc.identifier.citedreferenceGarfinkel, B.D., A. Froese & J. Hood. 1982. Suicide attempts in children and adolescents. Am. J. Psychiatry 139: 1257 – 1261.en_US
dc.identifier.citedreferenceLester, D. 1989. Experience of parental loss and later suicide: data from published biographies. Acta Psychiatr. Scand. 79: 450 – 452.en_US
dc.identifier.citedreferenceVÁzquez, D.M. & H. Akil. 1992. Development of pituitary pro-opiomelanocortin gene and peptide expression: Characterization and effect of repeated intermittent maternal isolation. Neuroendocrinology 56: 320 – 330.en_US
dc.identifier.citedreferenceVÁzquez, D.M. M.I. Morano, J.F. LÓpez, S.J. Watson & H. Akil. 1993. Short-term adrenalectomy increases glucocorticoid and mineralocorticoid receptor mRNA in selective areas of the developing hippocampus. Mol. Cell. Neurosci. 4: 455 – 471.en_US
dc.identifier.citedreferenceVÁzquez, D.M. & H. Akil. 1993. Pituitary-adrenal response to ether vapor in the weanling animal: Characterization of the inhibitory effect of glucocorticoids on adrenocorticotropin secretion. Pediatr. Res. 34: 646 – 653.en_US
dc.identifier.citedreferenceDe Kloet, E.R., P. Rosenfel, J.A.M. Van Eekelen, W. Sutanto & S. Levine. 1988. In Stress, Glucocorticoids and Development. G.J. Boer, M.G.P. Feenstra, D.F. Swaab & F. Van Haaren, Eds.: 73: 101 – 120 Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceSapolsky, R.M. & M.J. Meaney. 1986. Maturation of the adrenocortical stress response: Neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. Rev. 11: 65 – 76.en_US
dc.identifier.citedreferenceRosenfeld, P., Y.R. Gutierrez, A.M. Martin, H.A. Mallett, E. Alleva & S. Levine. 1991. Maternal regulation of the adrenocortical response in preweanling rats. Physiol. Behav. 50: 661 – 671.en_US
dc.identifier.citedreferenceLevine, S. 1994. The ontogeny of the hypothalamic-pituitary-adrenal axis: The influence of maternal factors. Ann. N.Y. Acad. Sci. 746: 275 – 288.en_US
dc.identifier.citedreferenceVÁzquez, D.M., H. Van Oers, S. Levine & H. Akil. Regulation of glucocorticoid and mineralocorticoid receptor mRNAs in the hippocampus of the maternally deprived infant rat. Brain Res. 731: 79 – 90.en_US
dc.identifier.citedreferencePlotsky, P.M. & M.J. Meaney. 1993. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Brain Res. Mol. Brain Res. 18: 195 – 200.en_US
dc.identifier.citedreferenceLadd, C. O., M. J. Owens & C. B. Nemeroff 1996. Persistent changes in corticotropin-releasing factor neuronal systems induced by maternal deprivation. Endocrinology 137: 1212 – 1218.en_US
dc.identifier.citedreferenceMeaney, M. J., J. Diorio, D. Francis, S. LaRocque, D. O'Donnell, J. W. Smythe, S. Sharma & B. Tannenbaum 1994. Environmental regulation of the development of glucocorticoid receptor systems in the rat forebrain. Ann. N. Y. Acad. Sci. 30: 260 – 274.en_US
dc.identifier.citedreferenceSmythe, J. W., W. B. Rowe & M. J. Meaney 1994. Neonatal handling alters serotonin (5-HT) turnover and 5-HT2 receptor binding in selected brain regions: relationship to the handling effect on glucocorticoid receptor expression. Brain Res. Dev. Brain Res. 80: 183 – 189.en_US
dc.identifier.citedreferenceMitchell, J. B., K. Betito, W. Rowe, P. Boksa & M. J. Meaney 1992. Serotonergic regulation of Type II corticosteroid receptor binding in hippocampal cell cultures: evidence for the importance of serotonin induced changes in cAMP levels. Neuroscience 48: 631 – 639.en_US
dc.identifier.citedreferenceLowy, M. T. & S. Novotney. 1994. Methamphetamine-induced decrease in neural glucocorticoid receptors: relationship to monoamine levels. Brain Res. 638: 175 – 181.en_US
dc.identifier.citedreferenceGreen, A. R., R. J. De Souza, J. L. Williams, T. K. Murray & A. J. Cross. 1994. The neurotoxic effects of methamphetamine on 5-hydroxytryptamine and dopamine in brain: evidence for the protective effect of chlormethiazole. Neuropharmacology 31: 315 – 321.en_US
dc.identifier.citedreferenceSeckl, J. R., K. L. Dickson & G. Fink 1990. Central 5,7-dihydroxytryptamine lesions decrease hippocampal glucorticoid and mineralocorticoid receptor messenger ribonucleic acid expression. J. Neuroendocrinol. 2: 911 – 916.en_US
dc.identifier.citedreferenceMurphy, B. E. P. 1991. Steroids and Depression. J. Steroid Biochem. 38: 537 – 559.en_US
dc.identifier.citedreferenceKathol, R. G. 1985. Etiologic implications of corticosteroid changes in affective disorder. Psychiatr. Med. 3: 135 – 155.en_US
dc.identifier.citedreferenceMurphy, B. E. P., V. Dhar, A. M. Ghadirian, G. Chouinard & R. Keller 1991. Response to steroid suppression in major depression resistant to antide-pressant therapy. J. Clin. Psychopharmacol. 11: 121 – 126.en_US
dc.identifier.citedreferenceGreden, J. F., R. Gardner, D. King, L. Grunhaus, B. J. Carroll & Z. Kronfol 1983. Dexamethasone suppression tests in antidepressant treatment of melancholia. Arch. Gen. Psychiatry 40: 493 – 500.en_US
dc.identifier.citedreferenceArango, V., P. Ernsberger, A. F. Sved & J. J. Mann 1993. Quantitative autoradiography alpha 1- and alpha 2-adrenergic receptors in the cerbral cortex of controls and suicide victims. Brain Res. 630 ( 1–2 ): 271 – 282.en_US
dc.identifier.citedreferenceBehan, D. P., D. E. Grigoriadis, T. Lovenberg, D. Chalmers, S. Heinrichs, C. Liaw & E. B. De Souza. 1996. Neurobiology of corticotropin releasing factor (CRF) receptors and CRF-binding protein: implications for the treatment of CNS disorders. Mol Psychiatry 1: 265 – 277.en_US
dc.identifier.citedreferenceChalmers, D. T., Lovenberg, D. E., Grigoriadis, D. P. Behan & E. B. Souza. 1996. Corticotrophin-releasing factor receptors: from molecular biology to drug design. Trends Pharmacol. Sci. 17: 166 – 172.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.