Show simple item record

The future of recombinant coagulation factors

dc.contributor.authorSaenko, E. L.en_US
dc.contributor.authorAnanyeva, N. M.en_US
dc.contributor.authorShima, M.en_US
dc.contributor.authorHauser, C. A. E.en_US
dc.contributor.authorPipe, Steven W.en_US
dc.date.accessioned2010-06-01T20:21:42Z
dc.date.available2010-06-01T20:21:42Z
dc.date.issued2003-05en_US
dc.identifier.citationSaenko, E. L.; Ananyeva, N. M.; Shima, M.; Hauser, C. A. E.; Pipe, S. W. (2003). "The future of recombinant coagulation factors." Journal of Thrombosis and Haemostasis 1(5): 922-930. <http://hdl.handle.net/2027.42/73478>en_US
dc.identifier.issn1538-7933en_US
dc.identifier.issn1538-7836en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73478
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=12871357&dopt=citationen_US
dc.description.abstractHemophilias A and B are X chromosome-linked bleeding disorders, which are mainly treated by repeated infusions of factor (F)VIII or FIX, respectively. In the present review, we specify the limitations in expression of recombinant (r)FVIII and summarize the bioengineering strategies that are currently being explored for constructing novel rFVIII molecules characterized by high efficiency expression and improved functional properties. We present the strategy to prolong FVIII lifetime by disrupting FVIII interaction with its clearance receptors and demonstrate how construction of human-porcine FVIII hybrid molecules can reduce their reactivity towards inhibitory antibodies. While the progress in improving rFIX is impeded by low recovery rates, the authors are optimistic that the efforts of basic science may ultimately lead to higher efficiency of replacement therapy of both hemophilias A and B.en_US
dc.format.extent173217 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Incen_US
dc.rights© 2003 International Society on Thrombosis and Haemostasisen_US
dc.subject.otherBioengineeringen_US
dc.subject.otherHemophiliaen_US
dc.subject.otherRecombinant Factor VIIIen_US
dc.subject.otherRecombinant Factor IXen_US
dc.subject.otherReplacement Therapyen_US
dc.titleThe future of recombinant coagulation factorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelInternal Medicine and Specialtiesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum§ Department of Pediatrics, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Biochemistry, Jerome H. Holland Laboratory for the Biomedical Sciences, American Red Cross, Rockville, MD, USA;en_US
dc.contributor.affiliationother† Department of Pediatrics, Nara Medical University, Nara 634–8522, Japan;en_US
dc.contributor.affiliationother† Department of Obstetrics and Gynecology, Medical University of Lubeck, Germany; anden_US
dc.identifier.pmid12871357en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73478/1/j.1538-7836.2003.00196.x.pdf
dc.identifier.doi10.1046/j.1538-7836.2003.00196.xen_US
dc.identifier.sourceJournal of Thrombosis and Haemostasisen_US
dc.identifier.citedreferenceBrinkhous K. Clotting defect in hemophilia: Deficiency in a plasma factor required for platelet utilization. Proc Soc Exp Biol Medl 1947; 66: 117.en_US
dc.identifier.citedreferenceMann KG. Biochemistry and physiology of blood coagulation. Thromb Haemost 1999; 82: 165 – 74.en_US
dc.identifier.citedreferenceGitschier J, Wood WI, Goralka TM, Wion KL, Chen EY, Eaton DH, Vehar GA, Capon DJ, Lawn RM. Characterization of the human factor VIII gene. Nature 1984; 312: 326 – 30.en_US
dc.identifier.citedreferenceToole JJ, Knopf JL, Wozney JM, Sultzman LA, Buecker JL, Pittman DD, Kaufman RJ, Brown E, Shoemaker C, Orr EC, Amphlett GW, Foster WB, Coe ML, Knutson GJ, Fass DN, Hewick RM. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 1984; 312: 342 – 7.en_US
dc.identifier.citedreferenceVehar GA, Keyt B, Eaton D, Rodriguez H, O'Brien DP, Rotblat F, Oppermann H, Keck R, Wood WI, Harkins RN, Tuddenham EGD, Lawn RM, Capon DJ. Structure of human factor VIII. Nature 1984; 312: 337 – 42.en_US
dc.identifier.citedreferenceWood WI, Capon DJ, Simonsen CC, Eaton DL, Gitschier J, Keyt B, Seeburg PH, Smith DH, Hollinghead P, Wion KL, Delwart E, Tuddenham EGD, Vehar GA, Lawn RM. Expression of active human factor VIII from recombinant DNA clones. Nature 1984; 312: 330 – 7.en_US
dc.identifier.citedreferenceMonahan PE, White IIGC. Hemophilia gene therapy. Update Curr Opin Hematol 2002; 9: 430 – 6.en_US
dc.identifier.citedreferenceHigh K. Gene-based approaches to the treatment of hemophilia. Ann N Y Acad Sci 2002; 961: 63 – 4.en_US
dc.identifier.citedreferenceHigh KA. Gene transfer as an approach to treating hemophilia. Circ Res 2001; 88: 137 – 44.en_US
dc.identifier.citedreferenceLynch CM, Israel DI, Kaufman RJ, Miller AD. Sequences in the coding region of clotting factor VIII act as dominant inhibitors of RNA accumulation and protein production. Hum Gene Ther 1993; 4: 259 – 72.en_US
dc.identifier.citedreferenceChuah MK, VandenDriessche T, Morgan RA. Development and analysis of retroviral vectors expressing human factor VIII as a potential gene therapy for hemophilia A. Hum Gene Ther 1995; 6: 1363 – 77.en_US
dc.identifier.citedreferenceKaufman RJ, Pipe SW. Can we improve on nature? ‘Super molecules’ of factor VIII. Haemophilia 1998; 4: 370 – 9.en_US
dc.identifier.citedreferenceHironaka T, Furukawa K, Esmon PC, Fournel MA, Sawada S, Kato M, Minaga T, Kobata A. Comparative study of the sugar chains of factor VIII purified from human plasma and from the culture media of recombinant baby hamster kidney cells. J Biol Chem 1992; 267: 8012 – 20.en_US
dc.identifier.citedreferenceKumar HP, Hague C, Haley T, Starr CM, Besman MJ, Lundblad RL, Baker D. Elucidation of N-linked oligosaccharide structures of recombinant human factor VIII using fluorophore-assisted carbohydrate electrophoresis. Biotechnol Appl Biochem 1996; 24: 207 – 16.en_US
dc.identifier.citedreferenceToole JJ, Pittman DD, Orr EC, Murtha P, Wasley LC, Kaufman RJ. A large region (>95 kDa) of human factor VIII is dispensable for in vitro procoagulant activity. Proc Natl Acad Sci USA 1986; 83: 5939 – 42.en_US
dc.identifier.citedreferenceDorner AJ, Bole DG, Kaufman RJ. The relationship of N-linked glycosylation and heavy chain–binding protein association with the secretion of glycoproteins. J Cell Biol 1987; 105: 2665 – 74.en_US
dc.identifier.citedreferencePittman DD, Alderman EM, Tomkinson KN, Wang JH, Giles AR, Kaufman RJ. Biochemical, Immunological, and in vivo Functional Characterization of B-Domain-Deleted Factor VIII. Blood 1993; 81: 2925 – 35.en_US
dc.identifier.citedreferenceSandberg H, Almstedt A, Brandt J, Castro VM, Gray E, Holmquist L, Lewin M, Oswaldsson U, Mikaelsson M, Jankowski MA, Bond M, Scoble HA. Structural and functional characterization of B-domain deleted recombinant factor VIII. Semin Hematol 2001; 38: 4 – 12.en_US
dc.identifier.citedreferenceCourter SG, Bedrosian CL. Clinical evaluation of B-domain deleted recombinant factor VIII in previously untreated patients. Semin Hematol 2001; 38: 52 – 9.en_US
dc.identifier.citedreferenceCourter SG, Bedrosian CL. Clinical evaluation of B-domain deleted recombinant factor VIII in previously treated patients. Semin Hematol 2001; 38: 44 – 51.en_US
dc.identifier.citedreferencePlantier JL, Rodriguez MH, Enjolras N, Attali O, Negrier C. A factor VIII minigene comprising the truncated intron I of factor IX highly improves the in vitro production of factor VIII. Thromb Haemost 2001; 86: 596 – 603.en_US
dc.identifier.citedreferenceKurachi S, Hitomi Y, Furukawa M, Kurachi K. Role of intron I in expression of the human factor IX gene. J Biol Chem 1995; 270: 5276 – 81.en_US
dc.identifier.citedreferenceEnjolras N, Rodriguez MH, Plantier JL, Maurice M, Attali O, Negrier C. The three in-frame ATG, clustered in the translation initiation sequence of human factor IX gene, are required for an optimal protein production. Thromb Haemost 1999; 82: 1264 – 9.en_US
dc.identifier.citedreferenceHoeben RC, Fallaux FJ, Cramer SJ, van den Wollenberg DJ, van Ormondt H, Briet E, van der Eb AJ. Expression of the blood-clotting factor-VIII cDNA is repressed by a transcriptional silencer located in its coding region. Blood 1995; 85: 2447 – 54.en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Increased synthesis of secreted proteins induces expression of glucose- regulated proteins in butyrate-treated Chinese hamster ovary cells. J Biol Chem 1989; 264: 20602 – 7.en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 1992; 11: 1563 – 71.en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Protein dissociation from GRP78 and secretion are blocked by depletion of cellular ATP levels. Proc Natl Acad Sci USA 1990; 87: 7429 – 32.en_US
dc.identifier.citedreferenceTagliavacca L, Wang Q, Kaufman RJ. ATP-dependent dissociation of non-disulfide-linked aggregates of coagulation factor VIII is a rate-limiting step for secretion. Biochemistry 2000; 39: 1973 – 81.en_US
dc.identifier.citedreferenceMarquette KA, Pittman DD, Kaufman RJ. A 110-amino acid region within the A1-domain of coagulation factor VIII inhibits secretion from mammalian cells. J Biol Chem 1995; 270: 10297 – 303.en_US
dc.identifier.citedreferenceSwaroop M, Moussalli M, Pipe SW, Kaufman RJ. Mutagenesis of a potential immunoglobulin-binding protein-binding site enhances secretion of coagulation factor VIII. J Biol Chem 1997; 272: 24121 – 4.en_US
dc.identifier.citedreferencePittman DD, Marquette KA, Kaufman RJ. Role of the B domain for factor VIII and factor V expression and function. Blood 1994; 84: 4214 – 25.en_US
dc.identifier.citedreferenceOeri J, Matter M, Isenschmid H, Hauser F, Koller F. Angeborener mangel an faktor V (parahaemophilie) verbunden mit echter haemophilie A bein zwei brudern. Med Probl Paediatr 1954; 1: 575.en_US
dc.identifier.citedreferencePipe SW, Morris JA, Shah J, Kaufman RJ. Differential interaction of coagulation factor VIII and factor V with protein chaperones calnexin and calreticulin. J Biol Chem 1998; 273: 8537 – 44.en_US
dc.identifier.citedreferencePipe SW, Miao H, Tendulkar R, Kaufman RJ. Asparagine-linked glycosylation sites within the B domain of coagulation factor VIII improve secretion efficiency. Blood 2001; 98: 705a (Abstract No. 2947).en_US
dc.identifier.citedreferenceVoorberg J, van Stempvoort G, Bos JM, Mertens K, van Mourik JA, Donath MJ. Enhanced thrombin sensitivity of a factor VIII-heparin cofactor II hybrid. J Biol Chem 1996; 271: 20985 – 8.en_US
dc.identifier.citedreferenceAmano K, Michnick DA, Moussalli M, Kaufman RJ. Mutation at either Arg336 or Arg562 in factor VIII is insufficient for complete resistance to activated protein C (APC)-mediated inactivation: implications for the APC resistance test. Thromb Haemost 1998; 79: 557 – 63.en_US
dc.identifier.citedreferenceFay PJ, Beattie TL, Regan LM, O'Brien LM, Kaufman RJ. Model for the factor VIIIa-dependent decay of the intrinsic factor Xase: role of subunit dissociation and factor IXa-catalyzed proteolysis. J Biol Chem 1996; 271: 6027 – 32.en_US
dc.identifier.citedreferencePipe SW, Kaufman RJ. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa. Proc Natl Acad Sci USA 1997; 94: 11851 – 6.en_US
dc.identifier.citedreferenceLenting P, Neels JG, van den Berg BM, Clijsters PFM, Meijerman DWE, Pannekoek H, van Mourik JA, Mertens K, Zonneveld A-J. The light chain of factor VIII comprises a binding site for low density lipoprotein receptor-related protein. J Biol Chem 1999; 274: 23734 – 9.en_US
dc.identifier.citedreferenceSaenko EL, Yakhyaev AV, Mikhailenko I, Strickland DK, Sarafanov AG. Role of the low density lipoprotein-related protein receptor in mediation of factor VIII catabolism. J Biol Chem 1999; 274: 37685 – 92.en_US
dc.identifier.citedreferenceTurecek PL, Lenting PJ, van Mourik JA, Binder B, Mihaly J, Denis C, Wagner D, Dorner F, Schwarz HP. Low density lipoprotein receptor-related protein (LRP) mediates the clearance of factor VIII in vWf-deficient mice. Blood 1999; 94: 647a.en_US
dc.identifier.citedreferenceNeels JG, Horn IR, Van den Berg BMM, Pannekoek H, van Zonneveld A-J. Ligand–receptor interactions of the low density lipoprotein receptor-related protein, a multi-ligand endocytic receptor. Fibrinolysis Proteolysis 1998; 12: 219 – 40.en_US
dc.identifier.citedreferenceNeels JG, van den Berg BM, Mertens K, Pannekoek H, Zonneveld A-J, Lenting P. Activation of factor IX zymogen results in exposure of a binding site for low-density lipoprotein receptor-related protein. Blood 2000; 96: 3459 – 65.en_US
dc.identifier.citedreferenceNarita M, Rudolph AE, Miletich JP, Schwartz AL. The low-density lipoprotein receptor-related protein (LRP) mediates clearance of coagulation factor Xa in vivo. Blood 1998; 91: 555 – 60.en_US
dc.identifier.citedreferenceKounnas MZ, Church FC, Argraves WS, Strickand DK. Cellular internalization and degradtion of antithrombin III-thrombin, heparin cofactor II-thrombin, and alpha1-antitrypsin-trypsin complexes is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 1996; 271: 6523 – 9.en_US
dc.identifier.citedreferenceWarshawsky I, Broze GJ Jr, Schwartz AL. The low density lipoprotein receptor-related protein mediates the cellular degradation of tissue factor pathway inhibitor. Proc Natl Acad Sci USA 1994; 91: 6664 – 8.en_US
dc.identifier.citedreferenceTurecek PL, Schwarz HP, Binder BR. In vivo inhibition of low density lipoprotein receptor-related protein improves survival of factor VIII in the absence of von Willebrand factor. Blood 2000; 95: 3637 – 8.en_US
dc.identifier.citedreferenceAnanyeva N, Kouiavskaia D, Shima M, Saenko E. Catabolism of the coagulation factor VIII. Can we prolong lifetime of fVIII in circulation? Trends Cardiovasc Med 2001; 11: 252 – 7.en_US
dc.identifier.citedreferenceSarafanov AG, Ananyeva NM, Shima M, Saenko EL. Cell surface heparan sulfate proteoglycans participate in factor VIII catabolism mediated by low density lipoprotein receptor-related protein. J Biol Chem 2001; 276: 11970 – 9.en_US
dc.identifier.citedreferenceTuddenham EG, Lane RS, Rotblat F, Johnson AJ, Snape TJ, Middleton S, Kernoff PB. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand's disease. Br J Haematol 1982; 52: 259 – 67.en_US
dc.identifier.citedreferenceLethagen S, Berntorp E, Nilsson IM. Pharmacokinetics and hemostatic effect of different factor VIII/von Willebrand factor concentrates in von Willebrand's disease type III. Ann Hematol 1992; 65: 253 – 9.en_US
dc.identifier.citedreferenceOver J, Sixma JJ, Bruine MH, Trieschnigg MC, Vlooswijk RA, Bieser-Visser NH, Bouma BN. Survival of 125 iodine-labeled factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human factor VIII. J Clin Invest 1978; 62: 223 – 34.en_US
dc.identifier.citedreferenceFijnvandraat K, Berntorp E, Ten Cate JW, Johnsson H, Peters M, Savidge G, Tengborn L, Spira J, Stahl C. Recombinant, B-domain deleted factor VIII (r-VIII SQ): pharmacokinetics and initial safety aspects in hemophilia A patients. Thromb Haemost 1997; 77: 298 – 302.en_US
dc.identifier.citedreferenceNeels JG, Bovenschen N, Zonneveld A-J, Lenting P. Interaction between factor VIII and LDL receptor-related protein. Trends Cardiovasc Med 2000; 10: 8 – 14.en_US
dc.identifier.citedreferenceMann DM, Romm E, Migliorini M. Delineation of the glycosaminoglycan-binding site in the human inflammatory response protein lactoferrin. J Biol Chem 1994; 269: 23661 – 7.en_US
dc.identifier.citedreferenceStoilova-McPhie S, Villoutreix BO, Mertens K, Kemball-Cook G, Holzenburg A. Three-Dimentional structure of membrane-bound coagulation factor VIII. modeling of the factor VIII heterodimer within a three-dimentional density map derived by electron crystallography. Blood 2002; 99: 1215 – 23.en_US
dc.identifier.citedreferenceRodenburg KW, Kjoller L, Petersen HH, Andreasen PA. Binding of urokinase-type plasminogen activator-plasminogen activator inhibitor-1 complex to the endocytosis receptors alpha2-macroglobulin receptor/low-density lipoprotein receptor-related protein and very-low-density lipoprotein receptor involves basic residues in the inhibitor. Biochem J 1998; 329: 55 – 63.en_US
dc.identifier.citedreferenceHoward GC, Yamaguchi Y, Mirsa UK, Gawdi G, Nelsen A, DeCamp DL, Pizzo SV. Selective mutations in cloned and expressed α 2 -macroglobulin receptor binding fragment alter binding to either the α 2 -macroglobulin signaling receptor or the low density lipoprotein receptor-related protein/α 2 -macroglobulin receptor. J Biol Chem 1996; 271: 14105 – 11.en_US
dc.identifier.citedreferenceKnauer MF, Kridel SJ, Hawley SB, Knauer DJ. The efficient catabolism of thrombin-protease nexin 1 complexes is a synergistic mechanism that requires both the LDL receptor-related protein and cell surface heparins. J Biol Chem 1997; 272: 29039 – 45.en_US
dc.identifier.citedreferenceSaenko EL, Ananyeva NM, Kouiavskaia DV, Khrenov AV, Anderson JA, Shima M, Qian J, Scott D, Haemophilia A. effects of inhibitory antibodies on factor VIII functional interactions and approaches to prevent their action. Haemophilia 2002; 8: 1 – 11.en_US
dc.identifier.citedreferenceKoshihara K, Qian J, Lollar P, Hoyer LW. Immunoblot cross-reactivity of factor VIII inhibitors with porcine factor VIII. Blood 1995; 86: 2183 – 90.en_US
dc.identifier.citedreferenceBarrow RT, Healey JF, Gailani D, Scandella D, Lollar P. Reduction of the antigenicity of factor VIII toward complex inhibitory antibody plasmas using multiply-substituted hybrid human/porcine factor VIII molecules. Blood 2000; 95: 564 – 8.en_US
dc.identifier.citedreferenceThompson AR, Cheng S-H. Characterization of factor IX defects in hemophilia B. In: Methods in Enzymology. Colowick, SP, Kaplan, NO, eds. San Diego: Acad Press, Inc. 1993.en_US
dc.identifier.citedreferenceYoshitake S, Schach BG, Foster DC, Davie EW, Kurachi K. Nucleotide sequence of the gene for human factor IX (antihemophilic factor B). Biochemistry 1985; 24: 3736 – 50.en_US
dc.identifier.citedreferenceKaufman RJ, Wasley LC, Furie BC, Furie B, Shoemaker CB. Expression, purification, and characterization of recombinant gamma-carboxylated factor IX synthesized in chinese hamster ovary cells. J Biol Chem 1986; 261: 9622 – 8.en_US
dc.identifier.citedreferenceRoth DA, Kessler CM, Pasi KJ, Rup B, Courter SG, Tubridy KL. Human recombinant factor IX. safety and efficacy studies in hemophilia B patients previously treated with plasma-derived factor IX concentrates. Blood 2001; 98: 3600 – 6.en_US
dc.identifier.citedreferenceSuttie JW. Mechanism of action of vitamin K. synthesis of gamma-carboxyglutamic acid. CRC Crit Rev Biochem PG 1980; 8: 191 – 223.en_US
dc.identifier.citedreferenceFernlund P, Stenflo J. Beta-hydroxyaspartic acid in vitamin K-dependent proteins. J Biol Chem 1983; 258: 12509 – 12.en_US
dc.identifier.citedreferenceKurachi K, Davie EW. Isolation and characterization of a cDNA coding for human factor IX. Proc Natl Acad Sci USA 1982; 79: 6461 – 4.en_US
dc.identifier.citedreferenceBalland A, Faure T, Carvallo D, Cordier P, Ulrich P, de la Fournet BSH, Lecocq JP. Characterisation of two differently processed forms of human recombinant factor IX synthesised in CHO cells transformed with a polycistronic vector. Eur J Biochem 1988; 172: 565 – 72.en_US
dc.identifier.citedreferenceHarrison S, Adamson S, Bonam D, Brodeur S, Charlebois T, Clancy B, Costigan R, Drapeau D, Hamilton M, Hanley K, Kelley B, Knight A, Leonard M, McCarthy M, Oakes P, Sterl K, Switzer M, Walsh R, Foster W. The manufacturing process for recombinant factor IX. Semin Hematol 1998; 35: 4 – 10.en_US
dc.identifier.citedreferenceBond M, Jankowski M, Patel H, Karnik S, Strang A, Xu B, Rouse J, Koza S, Letwin B, Steckert J, Amphlett G, Scoble H. Biochemical characterization of recombinant factor IX. Semin Hematol 1998; 35: 11 – 7.en_US
dc.identifier.citedreferenceWhite GC, Beebe A, Nielsen B. Recombinant factor IX. Thromb Haemost 1997; 78: 261 – 5.en_US
dc.identifier.citedreferenceAgarwala KL, Kawabata S, Takao T, Murata H, Shimonishi Y, Nishimura H, Iwanaga S. Activation peptide of human factor IX has oligosaccharides O-glycosidically linked to threonine residues at 159 and 169. Biochemistry 1994; 33: 5167 – 71.en_US
dc.identifier.citedreferenceEwenstein BM, Joist JH, Shapiro AD, Hofstra TC, Leissinger CA, Seremetis SV, Broder M, Mueller-Velten G, Schwartz BA. Pharmacokinetic analysis of plasma-derived and recombinant F IX concentrates in previously treated patients with moderate or severe hemophilia B. Transfusion 2002; 42: 190 – 7.en_US
dc.identifier.citedreferenceZheng B, Qiu XY, Tan M, Xing YN, Lo D, Xue JL, Qiu XF. Increment of hFIX expression with endogenous intron 1 in vitro. Cell Res 1997; 7: 21 – 9.en_US
dc.identifier.citedreferenceRodriguez MH, Enjolras N, Plantier JL, Rea M, Leboeuf M, Uzan G, Bordet JC, Negrier C. Expression of coagulation factor IX in a haematopoietic cell line. Thromb Haemost 2002; 87: 366 – 73.en_US
dc.identifier.citedreferenceKaufman RJ. Advances toward gene therapy for hemophilia at the millennium. Hum Gene Ther 1999; 10: 2091 – 107.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.