Show simple item record

Arcuate Nucleus Transcriptome Profiling Identifies Ankyrin Repeat and Suppressor of Cytokine Signalling Box-Containing Protein 4 as a Gene Regulated by Fasting in Central Nervous System Feeding Circuits

dc.contributor.authorLi, J.-Y.en_US
dc.contributor.authorKuick, Rorken_US
dc.contributor.authorThompson, Robert C.en_US
dc.contributor.authorMisek, David E.en_US
dc.contributor.authorLai, Y. -M.en_US
dc.contributor.authorLiu, Y. -Q.en_US
dc.contributor.authorChai, B. -X.en_US
dc.contributor.authorHanash, Samir M.en_US
dc.contributor.authorGantz, Iraen_US
dc.date.accessioned2010-06-01T20:22:29Z
dc.date.available2010-06-01T20:22:29Z
dc.date.issued2005-06en_US
dc.identifier.citationLi, J.-Y.; Kuick, R.; Thompson, R. C.; Misek, D. E.; Lai, Y.-M.; Liu, Y.-Q.; Chai, B.-X.; Hanash, S. M.; Gantz, I. (2005). "Arcuate Nucleus Transcriptome Profiling Identifies Ankyrin Repeat and Suppressor of Cytokine Signalling Box-Containing Protein 4 as a Gene Regulated by Fasting in Central Nervous System Feeding Circuits." Journal of Neuroendocrinology 17(6): 394-404. <http://hdl.handle.net/2027.42/73490>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73490
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15929745&dopt=citationen_US
dc.description.abstractThe arcuate nucleus of the hypothalamus is a primary site for sensing blood borne nutrients and hormonal messengers that reflect caloric status. To identify novel energy homeostatic genes, we examined RNA extracts from the microdissected arcuate nucleus of fed and 48-h fasted rats using oligonucleotide microarrays. The relative abundance of 118 mRNA transcripts was increased and 203 mRNA transcripts was decreased during fasting. One of the down-regulated mRNAs was ankyrin-repeat and suppressor of cytokine signalling box-containing protein 4 (Asb-4). The predicted structure of Asb-4 protein suggested that it might encode an intracellular regulatory protein, and therefore its mRNA expression was investigated further. Reverse transcription quantitative polymerase chain reaction was used to validate down-regulation of Asb-4 mRNA in the arcuate nucleus of the fasted Sprague-Dawley rat (relative expression of Asb-4 mRNA: fed = 4.66 ± 0.26; fasted = 3.96 ± 0.23; n = 4, P < 0.01). Down-regulation was also demonstrated in the obese fa/fa Zucker rat, another model of energy disequilibrium (relative expression of Asb-4 mRNA: lean Zucker = 3.91 ± 0.32; fa/fa  = 2.93 ± 0.26; n = 5, P < 0.001). In situ hybridisation shows that Asb-4 mRNA is expressed in brain areas linked to energy homeostasis, including the arcuate nucleus, paraventricular nucleus, dorsomedial nucleus, lateral hypothalamus and posterodorsal medial amygdaloid area. Double in situ hybridisation revealed that Asb-4 mRNA colocalises with key energy homeostatic neurones. In the fed state, Asb-4 mRNA is expressed by 95.6% of pro-opiomelanocortin (POMC) neurones and 46.4% of neuropeptide Y (NPY) neurones. By contrast, in the fasted state, the percentage of POMC neurones expressing Asb-4 mRNA drops to 73.2% (P  <  0.001). Moreover, the density of Asb-4 mRNA per fasted POMC neurone is markedly decreased. Conversely, expression of Asb-4 mRNA by NPY neurones in the fasted state is modestly increased to 52.7% (P  <  0.05). Based on its differential expression, neuroanatomical distribution and colocalisation, we hypothesise that Asb-4 is a gene involved in energy homeostasis.en_US
dc.format.extent681035 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 Blackwell Publishing Ltden_US
dc.subject.otherObesityen_US
dc.subject.otherPro-opiomelanocortinen_US
dc.subject.otherNeuropeptide Yen_US
dc.subject.otherHypothalamusen_US
dc.subject.otherPosterior Hypothalamusen_US
dc.subject.otherAmygdalaen_US
dc.titleArcuate Nucleus Transcriptome Profiling Identifies Ankyrin Repeat and Suppressor of Cytokine Signalling Box-Containing Protein 4 as a Gene Regulated by Fasting in Central Nervous System Feeding Circuitsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum§ Communicable Diseases, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationother* Surgeryen_US
dc.contributor.affiliationother† Pediatricsen_US
dc.contributor.affiliationother† Psychiatryen_US
dc.identifier.pmid15929745en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73490/1/j.1365-2826.2005.01317.x.pdf
dc.identifier.doi10.1111/j.1365-2826.2005.01317.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceSchwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000; 404: 661 – 671.en_US
dc.identifier.citedreferenceKorner J, Leibel R. To eat or not to eat − how the gut talks to the brain. N Engl J Med 2003; 349: 926 – 928.en_US
dc.identifier.citedreferenceMarx J. Cellular warriors at the battle of the bulge. Science 2003; 299: 846 – 849.en_US
dc.identifier.citedreferenceFlint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest 1998; 101: 515 – 520.en_US
dc.identifier.citedreferenceNaslund E, Barkeling B, King N, Gutniak M, Blundell JE, Holst JJ, Rossner S, Hellstrom PM. Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. Int J Obes Relat Metab Disord 1999; 23: 304 – 311.en_US
dc.identifier.citedreferenceLarsen PJ, Vrang N, Tang-Christensen M, Jensen PB, Hay-Schmidt A, Romer J, Bjerre-Knudsen L, Kristensen P. Ups and downs for neuropeptides in body weight homeostasis: pharmacological potential of cocaine amphetamine regulated transcript and pre-proglucagon-derived peptides. Eur J Pharmacol 2002; 440: 159 – 172.en_US
dc.identifier.citedreferenceDakin CL, Gunn I, Small CJ, Edwards CM, Hay DL, Smith DM, Ghatei MA, Bloom SR. Oxyntomodulin inhibits food intake in the rat. Endocrinology 2001; 142: 4244 – 4250.en_US
dc.identifier.citedreferenceCohen MA, Ellis SM, Le Roux CW, Batterham RL, Park A, Patterson M, Frost GS, Ghatei MA, Bloom SR. Oxyntomodulin suppresses appetite and reduces food intake in humans. J Clin Endocrinol Metab 2003; 88: 4696 – 4701.en_US
dc.identifier.citedreferenceKatsuura G, Asakawa A, Inui A. Roles of pancreatic polypeptide in regulation of food intake. Peptides 2002; 23: 323 – 329.en_US
dc.identifier.citedreferenceBatterham RL, Le Roux CW, Cohen MA, Park AJ, Ellis SM, Patterson M, Frost GS, Ghatei MA, Bloom SR. Pancreatic polypeptide reduces appetite and food intake in humans. J Clin Endocrinol Metab 2003; 88: 3989 – 3992.en_US
dc.identifier.citedreferenceAsakawa A, Inui A, Yuzuriha H, Ueno N, Katsuura G, Fujimiya M, Fujino MA, Niijima A, Meguid MM, Kasuga M. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 2003; 124: 1325 – 1336.en_US
dc.identifier.citedreferenceDruce MR, Small CJ, Bloom SR. Gut peptides regulating satiety. Endocrinology 2004; 145: 2660 – 2665.en_US
dc.identifier.citedreferenceHavel PJ, Larsen PJ, Cameron JL. Control of food intake. In: Nemeroff CB, eds. Neuroendocrinology. Boca Raton: CRC Press, 1992: 335 – 352.en_US
dc.identifier.citedreferenceGrill HJ, Kaplan JM. The neuroanatomical axis for control of energy balance. Front Neuroendocrinol 2002; 23: 2 – 40.en_US
dc.identifier.citedreferenceDate Y, Murakami N, Toshinai K, Matsukura S, Niijima A, Matsuo H, Kangawa K, Nakazato M. The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 2002; 123: 1120 – 1128.en_US
dc.identifier.citedreferencePalkovits M, ZÁborszky L. Neural connections of the hypothalmus. In: Morgane PJ, Panksepp J, eds. Handbook of the Hypothalamus, vol. 1. Anatomy of the Hypothalamus. New York: Marcel Dekker, Inc., 1979: 379 – 509.en_US
dc.identifier.citedreferenceChronwall BM. Anatomy and physiology of the neuroendocrine arcuate nucleus. Peptides 1985; 6 ( Suppl. 2 ): 1 – 11.en_US
dc.identifier.citedreferenceFan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD. Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 1997; 385: 165 – 168.en_US
dc.identifier.citedreferenceRossi M, Kim MS, Morgan DG, Small CJ, Edwards CM, Sunter D, Abusnana S, Goldstone AP, Russell SH, Stanley SA, Smith DM, Yagaloff K, Ghatei MA, Bloom SR. A C-terminal fragment of Agouti-related protein increases feeding and antagonizes the effect of alpha-melanocyte stimulating hormone in vivo. Endocrinology 1998; 139: 4428 – 4431.en_US
dc.identifier.citedreferenceKalra SP, Kalra PS. Neuropeptide Y a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 2003; 22: 49 – 56.en_US
dc.identifier.citedreferenceHahn TM, Breininger JF, Baskin DG, Schwartz MW. Coexpression of Agrp and NPY in fasting-activated hypothalamic neurons. Nature Neurosci 1998; 1: 271 – 272.en_US
dc.identifier.citedreferenceBroberger C, Visser TJ, Kuhar MJ, Hokfelt T. Neuropeptide Y innervation and neuropeptide-Y-Y1-receptor-expressing neurons in the paraventricular hypothalamic nucleus of the mouse. Neuroendocrinology 1999; 70: 295 – 305.en_US
dc.identifier.citedreferenceElias CF, Lee CE, Kelly JF, Ahima RS, Kuhar M, Saper CB, Elmquist JK. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 2001; 432: 1 – 19.en_US
dc.identifier.citedreferenceBagnol D, Lu XY, Kaelin CB, Day HE, Ollmann M, Gantz I, Akil H, Barsh GS, Watson SJ. Anatomy of an endogenous antagonist: relationship between Agouti-related protein and proopiomelanocortin in brain. J Neurosci 1999; 19: RC26.en_US
dc.identifier.citedreferenceHaskell-Luevano C, Chen P, Li C, Chang K, Smith MS, Cameron JL, Cone RD. Characterization of the neuroanatomical distribution of agouti-related protein immunoreactivity in the rhesus monkey and the rat. Endocrinology 1999; 140: 1408 – 1415.en_US
dc.identifier.citedreferenceLÉgrÁdi G, Lechan RM. The arcuate nucleus is the major source for neuropeptide Y-innervation of thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 1998; 139: 3262 – 3270.en_US
dc.identifier.citedreferenceFekete C, LÉgrÁdi G, Mihaly E, Huang QH, Tatro JB, Rand WM, Emerson CH, Lechan RM. Alpha-melanocyte-stimulating hormone is contained in nerve terminals innervating thyrotropin-releasing hormone-synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting-induced suppression of prothyrotropin-releasing hormone gene expression. J Neurosci 2000; 20: 1550 – 1558.en_US
dc.identifier.citedreferenceLi C, Chen P, Smith MS. Corticotropin releasing hormone neurons in the paraventricular nucleus are direct targets for neuropeptide Y neurons in the arcuate nucleus: an anterograde tracing study. Brain Res 2000; 854: 122 – 129.en_US
dc.identifier.citedreferenceMihÁly E, Fekete C, Tatro JB, Liposits Z, Stopa EG, Lechan RM. Hypophysiotropic thyrotropin-releasing hormone-synthesizing neurons in the human hypothalamus are innervated by neuropeptide Y, agouti-related protein, and alpha-melanocyte-stimulating hormone. J Clin Endocrinol Metab 2000; 85: 2596 – 2603.en_US
dc.identifier.citedreferenceMihÁly E, Fekete C, Lechan RM, Liposits Z. Corticotropin-releasing hormone-synthesizing neurons of the human hypothalamus receive neuropeptide Y-immunoreactive innervation from neurons residing primarily outside the infundibular nucleus. J Comp Neurol 2002; 446: 235 – 243.en_US
dc.identifier.citedreferenceLu XY, Barsh GS, Akil H, Watson SJ. Interaction between alpha-melanocyte-stimulating hormone and corticotropin-releasing hormone in the regulation of feeding and hypothalamo-pituitary-adrenal responses. J Neurosci 2003; 23: 7863 – 7872.en_US
dc.identifier.citedreferenceErickson JC, Hollopeter G, Palmiter RD. Attenuation of the obesity syndrome of ob/ob mice by the loss of neuropeptide Y. Science 1996; 274: 1704 – 1707.en_US
dc.identifier.citedreferenceHuszar D, Lynch CA, Fairchild-Huntress V, Dunmore JH, Fang Q, Berkemeier LR, Gu W, Kesterson RA, Boston BA, Cone RD, Smith FJ, Campfield LA, Burn P, Lee F. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88: 131 – 141.en_US
dc.identifier.citedreferenceYaswen L, Diehl N, Brennan MB, Hochgeschwender U. Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nature Med 1999; 5: 1066 – 1070.en_US
dc.identifier.citedreferenceOllmann MM, Wilson BD, Yang YK, Kerns JA, Chen Y, Gantz I, Barsh GS. Antagonism of central melanocortin receptors in vitro and in vivo by agouti-related protein. Science 1997; 278: 135 – 138.en_US
dc.identifier.citedreferenceFong TM, Mao C, MacNeil T, Kalyani R, Smith T, Weinberg D, Tota MR, Van der Ploeg LH. ART (protein product of agouti-related transcript) as an antagonist of MC-3 and MC-4 receptors. Biochem Biophys Res Commun 1997; 237: 629 – 631.en_US
dc.identifier.citedreferenceRosenfeld RD, Zeni L, Welcher AA, Narhi LO, Hale C, Marasco J, Delaney J, Gleason T, Philo JS, Katta V, Hui J, Baumgartner J, Graham M, Stark KL, Karbon W. Biochemical, biophysical, and pharmacological characterization of bacterially expressed human agouti-related protein. Biochemistry 1998; 37: 16041 – 16052.en_US
dc.identifier.citedreferenceButler AA, Kesterson RA, Khong K, Cullen MJ, Pelleymounter MA, Dekoning J, Baetscher M, Cone RD. A unique metabolic syndrome causes obesity in the melanocortin-3 receptor-deficient mouse. Endocrinology 2000; 141: 3518 – 3521.en_US
dc.identifier.citedreferenceChen AS, Marsh DJ, Trumbauer ME, Frazier EG, Guan XMYuH, Rosenblum CI, Vongs A, Feng Y, Cao L, Metzger JM, Strack AM, Camacho RE, Mellin TN, Nunes CN, Min W, Fisher J, Gopal-Truter S, MacIntyre DE, Chen HY, Van der Ploeg LH. Inactivation of the mouse melanocortin-3 receptor results in increased fat mass and reduced lean body mass. Nature Genet 2000; 26: 97 – 102.en_US
dc.identifier.citedreferenceKile BT, Viney EM, Willson TA, Brodnicki TC, Cancilla MR, Herlihy AS, Croker BA, Baca M, Nicola NA, Hilton DJ, Alexander WS. Cloning and characterization of the gene encoding the ankyrin repeat and SOCS box-containing proteins Asb-1, Asb-2, Asb-3 and Asb-4. Gene 2000; 258: 31 – 41.en_US
dc.identifier.citedreferencePaxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates, 4th edn. New York: Academic Press, 1998: 26 – 34.en_US
dc.identifier.citedreferenceSchafer MKH, Herman JP, Watson SJ. In situ hybridization histochemistry. In: London E, ed. Imaging Drug Action in the Brain. Boca Raton: CRC Press, 1993: 337 – 378.en_US
dc.identifier.citedreferenceRichardson HN, Parfitt DB, Thompson RC, Sisk CL. Redefining gonadotropin-releasing hormone (GnRH) cell groups in the male Syrian hamster: testosterone regulates GnRH mRNA in the tenia tecta. J Neuroendocrinol 2002; 14: 375 – 383.en_US
dc.identifier.citedreferenceSambrook J, Fritsch EF, Maniatis T, eds. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1989: 10.29 – 10.33.en_US
dc.identifier.citedreferenceHammerle K, Shayan P, Niemeyer CM, Flotho C. Expression analysis of alpha-NAC and ANX2 in juvenile myelomonocytic leukemia using SMART polymerase chain reaction and ‘virtual Northern’ hybridization. Cancer Genet Cytogenet 2003; 142: 149 – 152.en_US
dc.identifier.citedreferenceLi JY, Lescure PA, Misek DE, Lai YM, Chai BX, Kuick R, Thompson RC, Demo RM, Kurnit DM, Michailidis G, Hanash SM, Gantz I. Food deprivation-induced expression of minoxidil sulfotransferase in the hypothalamus uncovered by microarray analysis. J Biol Chem 2002; 277: 9069 – 9076.en_US
dc.identifier.citedreferenceKristensen P, Judge ME, Thim L, Ribel U, Christjansen KN, Wulff BS, Clausen JT, Jensen PB, Madsen OD, Vrang N, Larsen PJ, Hastrup S. Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature 1998; 393: 72 – 76.en_US
dc.identifier.citedreferenceBjorbaek C, El-Haschimi K, Frantz JD, Flier JS. The role of SOCS-3 in leptin signaling and leptin resistance. J Biol Chem 1999; 274: 30059 – 30065.en_US
dc.identifier.citedreferenceBates SH, Stearns WH, Dundon TA, Schubert M, Tso AW, Wang Y, Banks AS, Lavery HJ, Haq AK, Maratos-Flier E, Neel BG, Schwartz MW, Myers MG Jr. STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature 2003; 421: 856 – 859.en_US
dc.identifier.citedreferenceNiswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers MG Jr, Seeley RJ, Schwartz MW. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: a key mediator of insulin-induced anorexia. Diabetes 2003; 52: 227 – 231.en_US
dc.identifier.citedreferenceLauterio TJ, Marson L, Daughaday WH, Baile CA. Evidence for the role of insulin-like growth factor II (IGF-II) in the control of food intake. Physiol Behav 1987; 40: 755 – 758.en_US
dc.identifier.citedreferenceMerali Z, McIntosh J, Anisman H. Role of bombesin-related peptides in the control of food intake. Neuropeptides 1999; 33: 376 – 386.en_US
dc.identifier.citedreferenceRemaury A, Vita N, Gendreau S, Jung M, Arnone M, Poncelet M, Culouscou JM, Le Fur G, Soubrie P, Caput D, Shire D, Kopf M, Ferrara P. Targeted inactivation of the neurotensin type 1 receptor reveals its role in body temperature control and feeding behavior but not in analgesia. Brain Res 2002; 953: 63 – 72.en_US
dc.identifier.citedreferenceCompere V, Li S, Leprince J, Tonon MC, Vaudry H, Pelletier G. Effect of intra-cerebro-ventricular administration of the octadecaneuropeptide on the expression of pro-opiomelanocortin, neuropeptide Y and corticotropin-releasing hormone mRNAs in rat hypothalamus. J Neuroendocrinol 2003; 15: 197 – 203.en_US
dc.identifier.citedreferenceBruno JF, Olchovsky D, White JD, Leidy JW, Song J, Berelowitz M. Influence of food deprivation in the rat on hypothalamic expression of growth hormone-releasing factor and somatostatin. Endocrinology 1990; 127: 2111 – 2116.en_US
dc.identifier.citedreferenceObici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes 2002; 51: 271 – 275.en_US
dc.identifier.citedreferenceCohen P, Miyazaki M, Socci ND, Hagge-Greenberg A, Liedtke W, Soukas AA, Sharma R, Hudgins LC, Ntambi JM, Friedman JM. Role for stearoyl-CoA desaturase-1 in leptin-mediated weight loss. Science 2002; 297: 240 – 243.en_US
dc.identifier.citedreferenceHertzel AV, Bernlohr DA. The mammalian fatty acid-binding protein multigene family: molecular and genetic insights into function. Trends Endocrinol Metab 2000; 11: 175 – 180.en_US
dc.identifier.citedreferenceMinokoshi Y, Alquier T, Furukawa N, Kim YB, Lee A, Xue B, Mu J, Foufelle F, Ferre P, Birnbaum MJ, Stuck BJ, Kahn BB. AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature 2004; 428: 569 – 574.en_US
dc.identifier.citedreferenceBroberger C, De Lecea L, Sutcliffe JG, Hokfelt T. Hypocretin/orexin- and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: relationship to the neuropeptide Y and agouti gene-related protein systems. J Comp Neurol 1998; 402: 460 – 474.en_US
dc.identifier.citedreferenceElias CF, Saper CB, Maratos-Flier E, Tritos NA, Lee C, Kelly J, Tatro JB, Hoffman GE, Ollmann MM, Barsh GS, Sakurai T, Yanagisawa M, Elmquist JK. Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. J Comp Neurol 1998; 402: 442 – 459.en_US
dc.identifier.citedreferenceLÉgrÁdi G, Lechan RM. Agouti-related protein containing nerve terminals innervate thyrotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 1999; 140: 3643 – 3652.en_US
dc.identifier.citedreferenceKalra SP, Dube MG, Pu S, Xu B, Horvath TL, Kalra PS. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev 1999; 20: 68 – 100.en_US
dc.identifier.citedreferenceCowley MA, Smith RG, Diano S, Tschop M, Pronchuk N, Grove KL, Strasburger CJ, Bidlingmaier M, Esterman M, Heiman ML, Garcia-Segura LM, Nillni EA, Mendez P, Low MJ, Sotonyi P, Friedman JM, Liu H, Pinto S, Colmers WF, Cone RD, Horvath TL. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron 2003; 37: 649 – 661.en_US
dc.identifier.citedreferenceAbrahamson EE, Moore RY. The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 2001; 889: 1 – 22.en_US
dc.identifier.citedreferenceElmquist JK. Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. Physiol Behav 2001; 74: 703 – 708.en_US
dc.identifier.citedreferenceRoselli-Rehfuss L, Mountjoy KG, Robbins LS, Mortrud MT, Low MJ, Tatro JB, Entwistle ML, Simerly RB, Cone RD. Identification of a receptor for gamma melanotropin and other proopiomelanocortin peptides in the hypothalamus and limbic system. Proc Natl Acad Sci USA 1993; 90: 8856 – 8860.en_US
dc.identifier.citedreferenceMountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol Endocrinol 1994; 8: 1298 – 1308.en_US
dc.identifier.citedreferenceBittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE. The melanin-concentrating hormone system of the rat brain: an immuno- and hybridization histochemical characterization. J Comp Neurol 1992; 319: 218 – 245.en_US
dc.identifier.citedreferenceRollins BL, King BM. Amygdala-lesion obesity: what is the role of the various amygdaloid nuclei? Am J Physiol Regul Integr Comp Physiol 2000; 279: R1348 – R1356.en_US
dc.identifier.citedreferenceMagoul R, Ciofi P, Tramu G. Visualization of an efferent projection route of the hypothalamic rat arcuate nucleus through the stria terminalis after labeling with carbocyanine dye (DiI) or proopiomelanocortin-immunohistochemistry. Neurosci Lett 1994; 172: 134 – 138.en_US
dc.identifier.citedreferenceKing BM, Cook JT, Rossiter KN, Rollins BL. Obesity-inducing amygdala lesions: examination of anterograde degeneration and retrograde transport. Am J Physiol Regul Integr Comp Physiol 2003; 284: R965 – R982.en_US
dc.identifier.citedreferenceHuang XF, Han M, South T, Storlien L. Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Brain Res 2003; 992: 9 – 19.en_US
dc.identifier.citedreferenceSaito Y, Cheng M, Leslie FM, Civelli O. Expression of the melanin-concentrating hormone (MCH) receptor mRNA in the rat brain. J Comp Neurol 2001; 435: 26 – 40.en_US
dc.identifier.citedreferenceCavdar S, Onat F, Aker R, Sehirli U, San T, Yananli HR. The afferent connections of the posterior hypothalamic nucleus in the rat using horseradish peroxidase. J Anat 2001; 198: 463 – 472.en_US
dc.identifier.citedreferenceKile BT, Schulman BA, Alexander WS, Nicola NA, Martin HM, Hilton DJ. The SOCS box: a tale of destruction and degradation. Trends Biochem Sci 2002; 27: 235 – 241.en_US
dc.identifier.citedreferenceEmanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem 2000; 275: 15985 – 15991.en_US
dc.identifier.citedreferenceMosavi LK, Minor DL Jr, Peng ZY. Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA 2002; 99: 16029 – 16034.en_US
dc.identifier.citedreferenceKohroki J, Fujita S, Itoh N, Yamada Y, Imai H, Yumoto N, Nakanishi T, Tanaka K. ATRA-regulated Asb-2 gene induced in differentiation of HL-60 leukemia cells. FEBS Lett 2001; 505: 223 – 228.en_US
dc.identifier.citedreferenceBoengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E. The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophys Res Commun 2003; 302: 17 – 22.en_US
dc.identifier.citedreferenceMcDaneld TG, Hancock DL, Moody DE. Altered mRNA abundance of ASB15 and four other genes in skeletal muscle following administration of beta-adrenergic receptor agonists. Physiol Genom 2003; 16: 275 – 283.en_US
dc.identifier.citedreferenceKile BT, Metcalf D, Mifsud S, DiRago L, Nicola NA, Hilton DJ, Alexander WS. Functional analysis of Asb-1 using genetic modification in mice. Mol Cell Biol 2001; 21: 6189 – 6197.en_US
dc.identifier.citedreferenceWilcox A, Katsanakis KD, Bheda F, Pillay TS. Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem 2004; 279: 38881 – 38888.en_US
dc.identifier.citedreferenceMizuno Y, Sotomaru Y, Katsuzawa Y, Kono T, Meguro M, Oshimura M, Kawai J, Tomaru Y, Kiyosawa H, Nikaido I, Amanuma H, Hayashizaki Y, Okazaki Y. Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem Biophys Res Commun 2002; 290: 1499 – 1505.en_US
dc.identifier.citedreferenceKamura T, Sato S, Haque D, Liu L, Kaelin WG Jr, Conaway RC, Conaway JW. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12: 3872 – 3881.en_US
dc.identifier.citedreferenceZhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ, Moritz RL, Cary D, Richardson R, Hausmann G, Kile BJ, Kent SB, Alexander WS, Metcalf D, Hilton DJ, Nicola NA, Baca M. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96: 2071 – 2076.en_US
dc.identifier.citedreferenceLiu Y, Li J, Zhang F, Qin W, Yao G, He X, Xue P, Ge C, Wan D, Gu J. Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun 2003; 300: 972 – 979.en_US
dc.identifier.citedreferenceSchoenfeld AR, Davidowitz EJ, Burk RD. Elongin BC complex prevents degradation of von Hippel-Lindau tumor suppressor gene products. Proc Natl Acad Sci USA 2000; 97: 8507 – 8512.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.