Show simple item record

Endocrine and Paracrine Regulation of Endometrial Angiogenesis

dc.contributor.authorTaylor, Robert N.en_US
dc.contributor.authorLebovic, Dan I.en_US
dc.contributor.authorHornung, Danielaen_US
dc.contributor.authorMueller, Michael D.en_US
dc.date.accessioned2010-06-01T20:22:52Z
dc.date.available2010-06-01T20:22:52Z
dc.date.issued2001-09en_US
dc.identifier.citationTAYLOR, ROBERT N.; LEBOVIC, DAN I.; HORNUNG, DANIELA; MUELLER, MICHAEL D. (2001). "Endocrine and Paracrine Regulation of Endometrial Angiogenesis." Annals of the New York Academy of Sciences 943(1 HUMAN FERTILITY AND REPRODUCTION: THE OOCYTE, THE EMBRYO, AND THE UTERUS ): 109-121. <http://hdl.handle.net/2027.42/73496>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73496
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11594532&dopt=citationen_US
dc.description.abstractThe human endometrium is a complex tissue comprised of different cell types, including epithelial, stromal, inflammatory, perivascular, and blood vessel cells. The hormonal receptivity and distribution of these cell populations change during the menstrual cycle. Cyclical endometrial growth is dependent on its ability to regenerate a vascular capillary network, which grows in parallel with the proliferation and differentiation of the endometrial lining. Natural hormonal effects on the endometrium and endocrine manipulation of this tissue, in response to the use of exogenous steroid therapies, can affect endometrial capillary proliferation and function, leading to clinical abnormalities of uterine bleeding. We propose that the regulation of endometrial angiogenesis is mediated indirectly via complex interactions among cell types. Our laboratory has focused on a prototypical member of the angiogenic proteins, vascular endothelial growth factor (VEGF)-A. In this paper we present data demonstrating that VEGF-A expression in normal endometrial epithelial and stromal cells and in Ishikawa adenocarcinoma cells is increased by an ovarian steroid, estradiol. Infiltrating immune cells, particularly polymorphonuclear granulocytes, also are sources of VEGF-A. In inflammatory conditions involving the endometrium (e.g., endometriosis), a proinflammatory cytokine, IL-1Β, can mediate neoangiogenesis by inducing VEGF-A gene transcription. Thus, endometrial vascularization is effected by both endocrine and paracrine pathways.en_US
dc.format.extent2449163 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2001 by the New York Academy of Sciencesen_US
dc.subject.otherCytokinesen_US
dc.subject.otherSteroidsen_US
dc.subject.otherUterusen_US
dc.subject.otherVEGFen_US
dc.titleEndocrine and Paracrine Regulation of Endometrial Angiogenesisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan, School of Medicine, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherCenter for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, California 94143–0556, USAen_US
dc.contributor.affiliationotherUniversity of TÜbingen, TÜbingen, Germanyen_US
dc.contributor.affiliationotherUniversity of Berne, Berne, Switzerlanden_US
dc.identifier.pmid11594532en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73496/1/j.1749-6632.2001.tb03795.x.pdf
dc.identifier.doi10.1111/j.1749-6632.2001.tb03795.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceFolkman J. & M. Klagsburn. 1987. Angiogenic factors. Science 235: 442 – 447.en_US
dc.identifier.citedreferenceFerrara, N. et al. 1992. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocrine Rev. 13: 18 – 32.en_US
dc.identifier.citedreferenceTorry, D.S. et al. 1996. Vascular endothelial growth factor expression in cycling human endometrium. Fertil. Steril. 66: 72 – 80.en_US
dc.identifier.citedreferenceHuang, J.C., D. Y. Liu & M.Y. Dawood. 1998. The expression of vascular endothelial growth factor isoforms in cultured human endometrial stromal cells and its regulation by 17beta-oestradiol. Mol. Hum. Reprod. 4: 603 – 607.en_US
dc.identifier.citedreferenceMarkee, J. 1940. Menstruation in intraocular endometrial transplants in the rhesus monkey. Contrib. Embryol. 177: 221 – 308.en_US
dc.identifier.citedreferenceNoyes, R.W., A.T. Hertig & J. Rock. 1950. Dating the endometrial biopsy. Fertil. Steril. 1: 3 – 25.en_US
dc.identifier.citedreferenceFanger, H. & B.E. Barker, 1961. Capillaries and arterioles in normal endometrium. Obstet. Gynecol. 17: 543 – 550.en_US
dc.identifier.citedreferenceFerenczy, A., G. Bertrand & M. Gelfand. 1979. Proliferation kinetics of human endometrium during the normal mentrual cycle. Am. J. Obstet. Gynecol. 133: 859 – 867.en_US
dc.identifier.citedreferenceRogers, P.A., F. Lederman & N. Taylor. 1998. Endometrial microvascular growth in normal and dysfunctional states. Hum. Reprod. Update 4: 503 – 508.en_US
dc.identifier.citedreferenceNelson, K. et al. 1991. Epidermal growth factor replaces estrogen in the stimulation of female genital-tract growth and differentiation. Proc. Natl. Acad. Sci. USA 88: 21 – 25.en_US
dc.identifier.citedreferenceKaiserman-Abramof, I. & H. Padykula, 1989. Angiogenesis in the postovulatory primate endometrium: the coiled arteriolar system. Anat. Rec. 224: 479 – 489.en_US
dc.identifier.citedreferenceRyan, I., E. Schriock & R. Taylor. 1994. Isolation, characterization and comparison of human endometrial and endometriosis cells in vitro. J. Clin. Endocrinol. Metab. 78: 642 – 649.en_US
dc.identifier.citedreferenceShifren, J. et al. 1996. Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J. Clin. Endocrinol. Metab. 81: 3112 – 3118.en_US
dc.identifier.citedreferenceHornung, D. et al. 1997. Immunolocalization and regulation of the chemokine RANTES in human endometrial and endometriosis tissues and cells. J. Clin. Endocrinol. Metab. 82: 1621 – 1628.en_US
dc.identifier.citedreferenceMueller, M.D. et al. 2000. Neutrophils infiltrating the endometrium express vascular endothelial growth factor: potential role in endometrial angiogenesis. Fertil. Steril. 74: 107 – 112.en_US
dc.identifier.citedreferenceBrandenberger, A.W. et al. 1999. Oestrogen receptor (ER)-Α and ER-Β isoforms in normal endometrial and endometriosis-derived stromal cells. Mol. Hum. Reprod. 5: 651 – 655.en_US
dc.identifier.citedreferenceWang, G.M.J. & S.R. Glasser, 1996. Effects of tamoxifen and ICI 164384 on protein synthesis and vectorial secretion in polarized rat uterine epithelial cells. J. Steroid Biochem. Mol. Biol. 58: 307 – 317.en_US
dc.identifier.citedreferenceTora, L.M.A., D. Metzger, M. Ponglikitmongkol, et al. 1989. The cloned human oestrogen receptor contains a mutation which alters its hormone binding properties. EMBO J. 8: 1981 – 1986.en_US
dc.identifier.citedreferenceTseng, J. et al. 1996. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J. Clin. Endocrinol. Metab. 81: 1118 – 1122.en_US
dc.identifier.citedreferenceHornung, D., J.-L. Vigne & R.N. Taylor. 1998. RANTES derived from normal endometrial and endometriosis stromal cells has altered bio- to immunoactivity. J. Soc. Gynecol. Invest. 5: 18.en_US
dc.identifier.citedreferenceLebovic, D.I. et al. 2000. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-1beta. Mol. Hum. Reprod. 6: 269 – 275.en_US
dc.identifier.citedreferenceMueller, V.J., A. Minchenko, D.I. Lebovic, et al. 2000. Regulation of vascular endothelial growth factor (VEGF) gene transcription by estrogen receptors alpha and beta. Proc. Natl. Acad. Sci. USA 97: 10972 – 10977.en_US
dc.identifier.citedreferenceDonnez, J. et al. 1998. Vascular endothelial growth factor (VEGF) in endometriosis. Hum. Reprod. 13: 1686 – 1690.en_US
dc.identifier.citedreferencePerrot-Applanat, M. et al. 1988. Immunocytochemical demonstration of estrogen and progesterone receptors in muscle cells of uterine arteries in rabbits and humans. Endocrinology 123: 1511 – 1519.en_US
dc.identifier.citedreferenceTaylor, R.N. et al. 1999. Ovarian steroids and angiogenesis. In Understanding and Managing Endometriosis. A. Lemay & R. Maheux, eds.: 131–137. Parthenon. London.en_US
dc.identifier.citedreferenceBaker, V.L. et al. 1997. Human umbilical vessels and cultured umbilical vein endothelial and smooth muscle cells lack detectable protein and mRNA encoding estrogen receptors. J. Soc. Gynecol. Invest. 4: 316 – 324.en_US
dc.identifier.citedreferenceJensen, I. et al. 1998. Human umbilical vein endothelial cells lack expression of the estrogen receptor. Endothelium 6: 9 – 21.en_US
dc.identifier.citedreferenceKim-Schulze, S. et al. 1996. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 94: 1402 – 1407.en_US
dc.identifier.citedreferenceVazquez, F., J.C. Rodriguez-Manzaneque, J.P. Lydon, et al. 1999. Progesterone regulates proliferation of endothelial cells. J. Biol. Chem. 274: 2185 – 2192.en_US
dc.identifier.citedreferenceIruela-Arispe, M., C.A. Diglio & E.H. Sage. 1991. Modulation of extracellular matrix proteins by endothelial cells undergoing angiogenesis in vitro. Arterioscler. Thromb. 11: 805 – 815.en_US
dc.identifier.citedreferenceSmith, S. 1998. Angiogenesis, vascular endothelial growth factor and the endometrium. Hum. Reprod. Update 4: 509 – 519.en_US
dc.identifier.citedreferenceDiZerega, G., D. Barber & G. Hodgen. 1980. Endometriosis: role of ovarian steroids in initiation, maintenance, and suppression. Fertil. Steril. 33: 649 – 653.en_US
dc.identifier.citedreferenceSchriock, E. et al. 1985. Treatment of endometriosis with a potent agonist of gonadotropin-releasing hormone (nafarelin). Fertil. Steril. 44: 583 – 588.en_US
dc.identifier.citedreferenceGargett, C.E. et al. 1999. Lack of correlation between vascular endothelial growth factor production and endothelial cell proliferation in the human endometrium. Hum. Reprod. 14: 2080 – 2088.en_US
dc.identifier.citedreferenceDamsky, C.H. & S.J. Fisher, 1998. Trophoblast pseudo-vasculogenesis: faking it with endothelial adhesion receptors. Curr. Opin. Cell Biol. 5: 660 – 666.en_US
dc.identifier.citedreferenceCharnock-Jones, D.S. et al. 1994. Vascular endothelial growth factor receptor localization and activation in human trophoblast and choriocarcinoma cells. Biol. Reprod. 51: 524 – 530.en_US
dc.identifier.citedreferencePerrot-Applanat, M., M. Deng, H. Fernandez, et al. 1994. Immunohistochemical localization of estradiol and progesterone receptors in human uterus throughout pregnancy: expression in endometrial blood vessel. J. Clin. Endocrinol. Metab. 78: 216 – 224.en_US
dc.identifier.citedreferenceTischer, E. et al. 1991. The human gene for vascular endothelial growth factor: multiple protein forms are encoded through alternative exon splicing. J. Biol. Chem. 266: 11947 – 11954.en_US
dc.identifier.citedreferenceDavis, D.L. & J.B.E. Burch, 1996. The chicken vitellogenin II gene is flanked by a GATA factor-dependent estrogen response unit. Mol. Endocrinol. 10: 937 – 944.en_US
dc.identifier.citedreferenceGarrido, C., S. Saule & D. Gospodarowicz. 1993. Transcriptional regulation of vascular endothelial growth factor gene expression in ovarian bovine granulosa cells. Growth Factors 8: 109 – 117.en_US
dc.identifier.citedreferenceKlein-Hitpaß, L. et al. 1988. A 13 bp palindrome is a functional estrogen responsive element and interacts specifically with estrogen receptor. Nucl. Acids Res. 16: 647 – 663.en_US
dc.identifier.citedreferencevon der Ahe D. et al. 1985. Glucocorticoid and progesterone receptors bind to the same sites in two hormonally regulated promoters. Nature 313: 706 – 709.en_US
dc.identifier.citedreferenceWelter, J.F. et al. 1995. Fos-related Antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J. Biol. Chem. 270: 12614 – 12622.en_US
dc.identifier.citedreferenceHyder, S.M. et al. 2000. Identification of functional estrogen response elements in the gene coding for the potent angiogenic factor vascular endothelial growth factor. Cancer Res. 60: 3183 – 3190.en_US
dc.identifier.citedreferenceKumar, V. & P. Chambon, 1988. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 55: 145 – 156.en_US
dc.identifier.citedreferencePaech, K. et al. 1997. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277: 1508 – 1510.en_US
dc.identifier.citedreferenceRyuto, M. et al. 1996. Induction of vascular endothelial growth factor by tumor necrosis factor alpha in human glioma cells. Possible roles of SP-1. J. Biol. Chem. 271: 28220 – 28228.en_US
dc.identifier.citedreferenceRoyds, J.A. et al. 1998. Response of tumour cells to hypoxia: role of p53 and NFkB. Mol. Pathol. 51: 55 – 61.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.