Show simple item record

Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro

dc.contributor.authorSedgley, C. M.en_US
dc.contributor.authorNagel, A. C.en_US
dc.contributor.authorHall, D.en_US
dc.contributor.authorApplegate, B.en_US
dc.date.accessioned2010-06-01T20:23:29Z
dc.date.available2010-06-01T20:23:29Z
dc.date.issued2005-02en_US
dc.identifier.citationSedgley, C. M.; Nagel, A. C.; Hall, D.; Applegate, B. (2005). "Influence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro ." International Endodontic Journal 38(2): 97-104. <http://hdl.handle.net/2027.42/73506>en_US
dc.identifier.issn0143-2885en_US
dc.identifier.issn1365-2591en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73506
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15667631&dopt=citationen_US
dc.format.extent234184 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2005 International Endodontic Journalen_US
dc.subject.otherBacteriaen_US
dc.subject.otherBioluminescenceen_US
dc.subject.otherIrrigationen_US
dc.subject.otherIrrigant Needle Depthen_US
dc.subject.otherRoot Canalen_US
dc.titleInfluence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitroen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelDentistryen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Cariology, Restorative Sciences and Endodontics, University of Michigan Dental School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Radiology, University of Michigan Medical School, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Food Science, Purdue University, West Lafayette, IN, USAen_US
dc.identifier.pmid15667631en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73506/1/j.1365-2591.2004.00906.x.pdf
dc.identifier.doi10.1111/j.1365-2591.2004.00906.xen_US
dc.identifier.sourceInternational Endodontic Journalen_US
dc.identifier.citedreferenceAbou-Rass M, Piccinino MV ( 1982 ) The effectiveness of four clinical irrigation methods on the removal of root canal debris. Oral Surgery Oral Medicine and Oral Pathology 54, 323 – 8.en_US
dc.identifier.citedreferenceBriseno BM, Wirth R, Hamm G, Standhartinger W ( 1992 ) Efficacy of different irrigation methods and concentrations of root canal irrigation solutions on bacteria in the root canal. Endodontics and Dental Traumatology 8, 6 – 11.en_US
dc.identifier.citedreferenceBrown JI, Doran JE ( 1975 ) An in vitro evaluation of the particle flotation capability of various irrigating solutions. Journal of the Californian Dental Association 3, 60 – 3.en_US
dc.identifier.citedreferenceBystrÖm A, Sundqvist G ( 1981 ) Bacteriologic evaluation of the efficacy of mechanical root canal instrumentation in endodontic therapy. Scandinavian Journal of Dental Research 89, 321 – 8.en_US
dc.identifier.citedreferenceBystrÖm A, Sundqvist G ( 1983 ) Bacteriologic evaluation of the effect of 0.5 percent sodium hypochlorite in endodontic therapy. Oral Surgery Oral Medicine and Oral Pathology 55, 307 – 12.en_US
dc.identifier.citedreferenceBystrÖm A, Sundqvist G ( 1985 ) The antibacterial action of sodium hypochlorite and EDTA in 60 cases of endodontic therapy. International Endodontic Journal 18, 35 – 40.en_US
dc.identifier.citedreferenceCard SJ, Sigurdsson A, Orstavik D, Trope M ( 2002 ) The effectiveness of increased apical enlargement in reducing intracanal bacteria. Journal of Endodontics 28, 779 – 83.en_US
dc.identifier.citedreferenceChow TW ( 1983 ) Mechanical effectiveness of root canal irrigation. Journal of Endodontics 9, 475 – 9.en_US
dc.identifier.citedreferenceContag CH, Contag PR, Mullins JI, Spilman SD, Stevenson DK, Benaron DA ( 1995 ) Photonic detection of bacterial pathogens in living hosts. Molecular Microbiology 18, 593 – 603.en_US
dc.identifier.citedreferenceFabricius L, DahlÉn G, Holm S, MÖller AJR ( 1982a ) Influence of combinations of oral bacteria on periapical tissues of monkeys. Scandinavian Journal of Dental Research 90, 200 – 6.en_US
dc.identifier.citedreferenceFanibunda KB ( 1986 ) A method of measuring the volume of human dental pulp cavities. International Endodontic Journal 19, 194 – 7.en_US
dc.identifier.citedreferenceFrancis KP, Yu J, Bellinger-Kawahara C et al. ( 2001 ) Visualizing pneumococcal infections in the lungs of live mice using bioluminescent Streptococcus pneumoniae transformed with a novel gram-positive lux transposon. Infection and Immunity 69, 3350 – 8.en_US
dc.identifier.citedreferenceHaapasalo M, Ørstavik D ( 1987 ) In vitro infection and disinfection of dentinal tubules. Journal of Dental Research 66, 1375 – 9.en_US
dc.identifier.citedreferenceHeitzer A, Applegate B, Kehrmayer S et al. ( 1998 ) Physiological considerations of environmental applications of lux reporter fusions. Journal of Microbiological Methods 31, 45 – 57.en_US
dc.identifier.citedreferenceHulsmann M, Gressmann G, Schafers F ( 2003 ) A comparative study of root canal preparation using FlexMaster and HERO 642 rotary Ni-Ti instruments. International Endodontic Journal 36, 358 – 66.en_US
dc.identifier.citedreferenceKadurugamuwa JL, Sin LV, Yu J et al. ( 2003 ) Rapid direct method for monitoring antibiotics in a mouse model of bacterial biofilm infection. Antimicrobial Agents and Chemotherapy 47, 3130 – 7.en_US
dc.identifier.citedreferenceKahn FH, Rosenberg PA, Gliksberg J ( 1995 ) An in vitro evaluation of the irrigating characteristics of ultrasonic and subsonic handpieces and irrigating needles and probes. Journal of Endodontics 21, 277 – 80.en_US
dc.identifier.citedreferenceKakehashi S, Stanley HR, Fitzgerald RJ ( 1965 ) The effects of surgical exposures of dental pulps in germ-free and conventional laboratory rats. Oral Surgery Oral Medicine and Oral Pathology 20, 340 – 9.en_US
dc.identifier.citedreferenceKing JMH, DiGrazia PM, Applegate BM et al. ( 1990 ) Rapid, sensitive bioluminescent reporter technology for naphthalene exposure and biodegradation. Science 249, 778 – 81.en_US
dc.identifier.citedreferenceLin LM, Pascon EA, Skribner J, Gangler P, Langeland K ( 1991 ) Clinical, radiographic, and histologic study of endodontic treatment failures. Oral Surgery Oral Medicine and Oral Pathology 71, 603 – 11.en_US
dc.identifier.citedreferenceMayer BE, Peters OA, Barbakow F ( 2002 ) Effects of rotary instruments and ultrasonic irrigation on debris and smear layer scores: a scanning electron microscopic study. International Endodontic Journal 35, 582 – 9.en_US
dc.identifier.citedreferenceMÖller AJR, Fabricius L, DahlÉn G, Ohman AE, Heydon G ( 1981 ) Influence on periapical tissues of indigenous oral bacteria and necrotic pulp tissue in monkeys. Scandinavian Journal of Dental Research 89, 475 – 84.en_US
dc.identifier.citedreferenceMoorer WR, Wesselink PR ( 1982 ) Factors promoting the tissue dissolving capacity of sodium hypochlorite. International Endodontic Journal 15, 187 – 96.en_US
dc.identifier.citedreferenceRollison S, Barnett F, Stevens RH ( 2002 ) Efficacy of bacterial removal from instrumented root canals in vitro related to instrumentation technique and size. Oral Surgery Oral Medicine and Oral Pathology Oral Radiology and Endodontics 94, 366 – 71.en_US
dc.identifier.citedreferenceSedgley CM, Applegate B, Nagel AC, Hall D ( 2004 ) Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. Journal of Endodontics 30, 893 – 8.en_US
dc.identifier.citedreferenceShabahang S, Pouresmail M, Torabinejad M ( 2003 ) In vitro antimicrobial efficacy of MTAD and sodium hypochlorite. Journal of Endodontics 29, 450 – 2.en_US
dc.identifier.citedreferenceShaw JJ, Settles LG, Kado CI ( 1988 ) Transposon Tn4431 mutagenesis of Xanthomonas campestris pv. campestris:characterization of a nonpathogenic mutant and cloning of a locus for pathogenicity. Molecular Plant-Microbe Interactions 1, 39 – 45.en_US
dc.identifier.citedreferenceShuping GB, Orstavik D, Sigurdsson A, Trope M ( 2000 ) Reduction of intracanal bacteria using nickel-titanium rotary instrumentation and various medications. Journal of Endodontics 26, 751 – 5.en_US
dc.identifier.citedreferenceSiqueira JF Jr, Rjcas IN, Santos SR, Lima KC, Magalhaes FA, de Uzeda M ( 2002 ) Efficacy of instrumentation techniques and irrigation regimens in reducing the bacterial population within root canals. Journal of Endodontics 28, 181 – 4.en_US
dc.identifier.citedreferenceTorabinejad M, Khademi AA, Babagoli J et al. ( 2003 ) A new solution for the removal of the smear layer. Journal of Endodontics 29, 170 – 5.en_US
dc.identifier.citedreferenceWalters MJ, Baumgartner JC, Marshall JG ( 2002 ) Efficacy of irrigation with rotary instrumentation. Journal of Endodontics 28, 837 – 9.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.