Show simple item record

Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone

dc.contributor.authorHarper, James M.en_US
dc.contributor.authorSalmon, Adam Buden_US
dc.contributor.authorLeiser, Scott Fredericken_US
dc.contributor.authorGalecki, Andrzej T.en_US
dc.contributor.authorMiller, Richard A.en_US
dc.date.accessioned2010-06-01T20:24:32Z
dc.date.available2010-06-01T20:24:32Z
dc.date.issued2007-02en_US
dc.identifier.citationHarper, James M.; Salmon, Adam B.; Leiser, Scott F.; Galecki, Andrzej T.; Miller, Richard A. (2007). "Skin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenone." Aging Cell 6(1): 1-13. <http://hdl.handle.net/2027.42/73523>en_US
dc.identifier.issn1474-9718en_US
dc.identifier.issn1474-9726en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73523
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17156084&dopt=citationen_US
dc.description.abstractFibroblast cell lines were developed from skin biopsies of eight species of wild-trapped rodents, one species of bat, and a group of genetically heterogeneous laboratory mice. Each cell line was tested in vitro for their resistance to six varieties of lethal stress, as well as for resistance to the nonlethal metabolic effects of the mitochondrial inhibitor rotenone and of culture at very low glucose levels. Standard linear regression of species-specific lifespan against each species mean stress resistance showed that longevity was associated with resistance to death induced by cadmium and hydrogen peroxide, as well as with resistance to rotenone inhibition. A multilevel regression method supported these associations, and suggested a similar association for resistance to heat stress. Regressions for resistance to cadmium, peroxide, heat, and rotenone remained significant after various statistical adjustments for body weight. In contrast, cells from longer-lived species did not show significantly greater resistance to ultraviolet light, paraquat, or the DNA alkylating agent methylmethanesulfonate. There was a strong correlation between species longevity and resistance to the metabolic effects of low-glucose medium among the rodent cell lines, but this test did not distinguish mice and rats from the much longer-lived little brown bat. These results are consistent with the idea that evolution of long-lived species may require development of cellular resistance to several forms of lethal injury, and provide justification for evaluation of similar properties in a much wider range of mammals and bird species.en_US
dc.format.extent199646 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2006 The Authors Journal compilation © Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland 2006en_US
dc.subject.otherEvolutionen_US
dc.subject.otherFibroblasten_US
dc.subject.otherLongevityen_US
dc.subject.otherOxidationen_US
dc.subject.otherStressen_US
dc.titleSkin-derived fibroblasts from long-lived species are resistant to some, but not all, lethal stresses and to the mitochondrial inhibitor rotenoneen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumVA Medical Center, University of Michigan, School of Medicine, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Pathology,en_US
dc.contributor.affiliationotherProgram in Cellular and Molecular Biology,en_US
dc.contributor.affiliationotherGeriatrics Center, anden_US
dc.identifier.pmid17156084en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73523/1/j.1474-9726.2006.00255.x.pdf
dc.identifier.doi10.1111/j.1474-9726.2006.00255.xen_US
dc.identifier.sourceAging Cellen_US
dc.identifier.citedreferenceAbouheif E ( 1999 ) A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1, 895 – 909.en_US
dc.identifier.citedreferenceAdkins RM, Walton AH, Honeycutt RL ( 2003 ) Higher-level systematics of rodents and divergence time estimates based on two congruent nuclear genes. Mol. Phylogenet. Evol. 26, 409 – 420.en_US
dc.identifier.citedreferenceAmrine-Madsen H, Koepfli KP, Wayne RK, Springer MS ( 2003 ) A new phylogenetic marker, apolipoprotein B, provides compelling evidence for eutherian relationships. Mol. Phylogenet. Evol. 28, 225 – 240.en_US
dc.identifier.citedreferenceAustad SN ( 2005 ) Diverse aging rates in metazoans: targets for functional genomics. Mech. Ageing Dev. 126, 43 – 49.en_US
dc.identifier.citedreferenceAustad SN, Fischer KE ( 1991 ) Mammalian aging, metabolism, and ecology: evidence from the bats and marsupials. J. Gerontol. Biol. Sci. 46, B47 – B53.en_US
dc.identifier.citedreferenceBartke A, Coschigano K, Kopchick J, Chandrashekar V, Mattison J, Kinney B, Hauck S ( 2001 ) Genes that prolong life: relationships of growth hormone and growth to aging and life span. J. Gerontol. A, Bio. Med. Sci. 56, B340 – B349.en_US
dc.identifier.citedreferenceBerridge MV, Tan AS, McCoy KD, Wang R ( 1996 ) The biochemical and cellular basis of cell proliferation assays that use tetrazolium salts. Biochemica 4, 14 – 19.en_US
dc.identifier.citedreferenceBlomberg SP, Garland T, Ives AR ( 2003 ) Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717 – 745.en_US
dc.identifier.citedreferenceBrown-Borg HM, Borg KE, Meliska CJ, Bartke A ( 1996 ) Dwarf mice and the ageing process. Nature 384, 33.en_US
dc.identifier.citedreferenceBus JS, Cagen SZ, Olgaard M, Gibson JE ( 1976 ) A mechanism of paraquat toxicity in mice and rats. Toxicol. Appl. Pharmacol. 35, 501 – 513.en_US
dc.identifier.citedreferenceBusuttil RA, Rubio M, DolI AC, Campisi J, Vijg J ( 2003 ) Oxygen accelerates the accumulation of mutations during the senescence and immortalization of murine cells in culture. Aging Cell 2, 287 – 294.en_US
dc.identifier.citedreferenceCamper SA, Saunders TL, Katz RW, Reeves RH ( 1990 ) The Pit-1 transcription factor gene is a candidate for the murine Snell dwarf mutation. Genomics 8, 586 – 590.en_US
dc.identifier.citedreferenceCarey JR, Judge DS ( 2000 ) Longevity Records: Life Spans of Mammals, Birds, Amphibians, Reptiles, and Fish. Odense, Denmark: Odense University Press.en_US
dc.identifier.citedreferenceComfort A ( 1979 ) The Biology of Senescence. New York: Elsevier.en_US
dc.identifier.citedreferenceCortopassi GA, Wang E ( 1996 ) There is substantial agreement among interspecies estimates of DNA repair activity. Mech. Ageing Dev. 91, 211 – 218.en_US
dc.identifier.citedreferenceCoschigano KT, Clemmons D, Bellush LL, Kopchick JJ ( 2000 ) Assessment of growth parameters and life span of GHR/BP gene-disrupted mice. Endocrinology 141, 2608 – 2613.en_US
dc.identifier.citedreferenceDeBry RW, Sagel RM ( 2001 ) Phylogeny of Rodentia (Mammalia) inferred from the nuclear-encoded gene IRBP. Mol. Phylogenet. Evol. 19, 290 – 301.en_US
dc.identifier.citedreferenceDeBry RW, Seshadri S ( 2001 ) Nuclear intron sequences for phylogenetics of closely related mammals: an example using the phylogeny of MUS. J. Mammal. 82, 280 – 288.en_US
dc.identifier.citedreferenceFelsenstein J ( 1985 ) Phylogenies and the comparative method. Am. Nat. 125, 1 – 15.en_US
dc.identifier.citedreferenceFlurkey K, Papaconstantinou J, Miller RA, Harrison DE ( 2001 ) Lifespan extension and delayed immune and collagen aging in mutant mice with defects in growth hormone production. Proc. Natl Acad. Sci. USA 98, 6736 – 6741.en_US
dc.identifier.citedreferenceFrancis AA, Lee WH, Regan JD ( 1981 ) The relationship of DNA excision repair of ultraviolet-induced lesions to the maximum life span of mammals. Mech. Ageing Dev. 16, 181 – 189.en_US
dc.identifier.citedreferenceFreckleton RP, Harvey PH, Pagel M ( 2002 ) Phylogenetic analysis and comparative data: a test and review of the evidence. Am. Nat. 160, 712 – 726.en_US
dc.identifier.citedreferenceGarland T Jr, Bennett AF, Rezende EL ( 2005 ) Phylogenetic approaches in comparative physiology. J. Exp. Biol. 208, 3015 – 3035.en_US
dc.identifier.citedreferenceGarland T Jr, Dickerman CM, Janis CM, Jones JA ( 1993 ) Phylogenetic analysis of covariance by computer simulation. Syst. Biol. 42, 265 – 292.en_US
dc.identifier.citedreferenceGarland T Jr, Harvey PH, Ives AR ( 1992 ) Procedures for the analysis of comparative data using phylogenetically independent contrasts. Syst. Biol. 41, 18 – 32.en_US
dc.identifier.citedreferenceGarland T Jr, Ives AR ( 2000 ) Using the past to predict the present: confidence intervals for regression eqations in phylogenetic comparative methods. Am. Nat. 155, 346 – 364.en_US
dc.identifier.citedreferenceGarland T Jr, Midford PE, Ives AR ( 1999 ) An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral stus. Am. Zool. 39, 374 – 388.en_US
dc.identifier.citedreferenceGuarente L, Kenyon C ( 2000 ) Genetic pathways that regulate ageing in model organisms. [Review][97 refs]. Nature 408, 255 – 262.en_US
dc.identifier.citedreferenceHall KY, Hart RW, Benirschke AK, Walford RL ( 1984 ) Correlation between ultraviolet-induced DNA repair in primate lymphocytes and fibroblasts and species maximum achievable life span. Mech. Ageing Dev. 24, 163 – 173.en_US
dc.identifier.citedreferenceHalliwell B, Gutteridge JMC ( 1989 ) Free Radicals in Biology and Medicine. Oxford: Oxford University Press.en_US
dc.identifier.citedreferenceHanawalt PC ( 2001 ) Revisiting the rodent repairadox. Environ. Mol. Mutagen. 38, 89 – 96.en_US
dc.identifier.citedreferenceHart RW, Setlow RB ( 1974 ) Correlation between deoxyribonucleic acid excision repair and lifespan in a number of mammalian species. Proc. Natl Acad. Sci. USA 71, 2169 – 2173.en_US
dc.identifier.citedreferenceHerst PM, Tan AS, Scarlett DJ, Berridge MV ( 2004 ) Cell surface oxygen consumption by mitochondrial gene knockout cells. Biochim. Biophys. Acta 1656, 79 – 87.en_US
dc.identifier.citedreferenceJansa SA, Weksler M ( 2004 ) Phylogeny of muroid rodents: relationships within and among major lineages as determined by IRBP gene sequences. Mol. Phylogenet. Evol. 31, 256 – 276.en_US
dc.identifier.citedreferenceJohnson TE, Lithgow GJ, Murakami S ( 1996 ) Hypothesis: interventions that increase the response to stress offer the potential for effective life prolongation and increased health. J. Gerontol. A Biol. Sci. Med. Sci. 51, B392 – B395.en_US
dc.identifier.citedreferenceKapahi P, Boulton ME, Kirkwood TB ( 1999 ) Positive correlation between mammalian life span and cellular resistance to stress. Free Rad. Biol. Med. 26, 495 – 500.en_US
dc.identifier.citedreferenceKato H, Harada M, Tsuchiya K, Moriwaki K ( 1980 ) Absence of correlation between DNA repair in ultraviolet irradiated mammalian cells and life span of the donor species. Jap. J. Genet. 55, 99 – 108.en_US
dc.identifier.citedreferenceLarsen PL ( 1993 ) Aging and resistance to oxidative damage in Caenorhabditis elegans. Proc. Natl Acad. Sci. USA 90, 8905 – 8909.en_US
dc.identifier.citedreferenceLeiser SF, Salmon AB, Miller RA ( 2006 ) Correlated resistance to glucose deprivation and cytotoxic agents in fibroblast cell lines from long-Iived pituitary dwarf mice. Mech. Ageing Dev. 127, 821 – 829.en_US
dc.identifier.citedreferenceLithgow GJ, White TM, Hinerfeld DA, Johnson TE ( 1994 ) Thermotolerance of a long-lived mutant of Caenorhabditis elegans. J. Gerontol. Biol. Sci. 49, B270 – B276.en_US
dc.identifier.citedreferenceLundrigan BL, Jansa SA, Tucker PK ( 2002 ) Phylogenetic relationships in the genus mus, based on paternally, maternally, and biparentally inherited characters. Syst. Biol. 51, 410 – 431.en_US
dc.identifier.citedreferencede Magalhaes JP, Costa J, Toussaint O ( 2005 ) HAGR: the human ageing genomic resources. Nucl. Acids Res. 33, D537 – D543.en_US
dc.identifier.citedreferenceMaynard SP, Miller RA ( 2006 ) Fibroblasts from long-lived Snell dwarf mice are resistant to oxygen-induced in vitro growth arrest. Aging Cell. 5, 89 – 96.en_US
dc.identifier.citedreferenceMiller RA, Austad SN ( 2006 ) Growth and aging: why do big dogs die young? In Handbook of the Biology of Aging ( Masoro EJ, Austad SN, eds). New York: Academic Press, pp. 512 – 533.en_US
dc.identifier.citedreferenceMiller RA, Austad S, Burke D, Chrisp C, Dysko R, Galecki A, Monnier V ( 1999 ) Exotic mice as models for aging research: polemic and prospectus. Neurobiol. Aging 20, 217 – 231.en_US
dc.identifier.citedreferenceMiller RA, Dysko R, Chrisp C, Seguin R, Linsalata L, Buehner G, Harper JM, Austad S ( 2000 ) Mouse (Mus musculus) stocks derived from tropical islands: new models for genetic analysis of life history traits. J. Zool. 250, 95 – 104.en_US
dc.identifier.citedreferenceMiller RA, Harper JM, Dysko RC, Durkee SJ, Austad SN ( 2002 ) Longer life spans and delayed maturation in wild-derived mice. Exp. Biol. Med. 227, 500 – 508.en_US
dc.identifier.citedreferenceMontgelard C, Bentz S, Tirard C, Verneau O, Catzeflis FM ( 2002 ) Molecular systematics of Sciurognathi (Rodentia): The mitochondrial cytochrome b and 12S rRNA genes support the Anomaluroidea (Pedetidae and Anomaluridae). Mol. Phylogenet. Evol. 22, 220 – 233.en_US
dc.identifier.citedreferenceMurakami S, Salmon A, Miller RA ( 2003 ) Multiplex stress resistance in cells from long-lived dwarf mice. FASEB J. 17, 1565 – 1566.en_US
dc.identifier.citedreferenceMurphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C ( 2003 ) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424, 277 – 283.en_US
dc.identifier.citedreferenceOgburn CE, Austad SN, Holmes DJ, Kiklevich JV, Gollahon K, Rabinovitch PS, Martin GM ( 1998 ) Cultured renal epithelial cell from birds and mice: Enhanced resistance of avian cells to oxidative stress and DNA damage. J. Gerontol. Biol. Sci. 53, B287 – B292.en_US
dc.identifier.citedreferenceOgburn CE, Carlberg K, Ottinger MA, Holmes DJ, Martin GM, Austad SN ( 2001 ) Exception resistance to oxidative damage in long-lived birds requires active gene expression. J. Gerontol. Biol. Sci. 56, B468 – B474.en_US
dc.identifier.citedreferenceParrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J ( 2003 ) Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. [erratum appears in Nat. Cell Biol. 2003 September; 5 (9): 839]. Nat. Cell Biol. 5, 741 – 747.en_US
dc.identifier.citedreferenceSalmon AB, Murakami S, Bartke A, Kopchick J, Yasumura K, Miller RA ( 2005 ) Fibroblast cell lines from young adult mice of long-lived mutant strains are resistant to multiple forms of stress. Am. J. Physiol. Endocrinol. Metab. 289, E23 – E29.en_US
dc.identifier.citedreferenceSilver LM ( 1995 ) Mouse Genetics. New York: Oxford University Press.en_US
dc.identifier.citedreferenceSohal RS, Sohal BH, Brunk UT ( 1990 ) Relationship between antioxidant defenses and longevity in different mammalian species. Mech. Ageing Dev. 53, 217 – 227.en_US
dc.identifier.citedreferenceSpeakman JR ( 2005 ) Correlations between physiology and lifespan – two widely ignored problems with comparative studies. Aging Cell 4, 167 – 175.en_US
dc.identifier.citedreferenceSteppan SR, Adkins RM, Anderson J ( 2004a ) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst. Biol. 53, 533 – 553.en_US
dc.identifier.citedreferenceSteppan SJ, Storz BL, Hoffmann RS ( 2004b ) Nuclear DNA phylogeny of the squirrels (Mammalia: Rodentia) and the evolution of arboreality from c-myc and RAG1. Mol. Phylogenet. Evol. 30, 703 – 719.en_US
dc.identifier.citedreferenceSteppan SJ, Adkins RM, Spinks PQ, Hale C ( 2005 ) Multigene phylogeny of the Old World mice, Murinae, reveals distinct geographic lineages and the declining utility of mitochondrial genes compared to nuclear genes. Mol. Phylogenet. Evol. 37, 370 – 388.en_US
dc.identifier.citedreferenceStohs SJ, Bagchi D ( 1995 ) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18, 321 – 336.en_US
dc.identifier.citedreferenceTolmasoff JM, Ono T, Cutler RG ( 1980 ) Superoxide dismutase: correlation with life-span and specific metabolic rate in promote species. Proc. Natl Acad. Sci. USA 77, 2777 – 2781.en_US
dc.identifier.citedreferenceTreton JA, Courtois Y ( 1990 ) Biomarkers of aging. Ann. Biol. Clin. (Paris) 48, 319 – 322.en_US
dc.identifier.citedreferenceWilkinson GS, South JM ( 2002 ) Life history, ecology and longevity in bats. Aging Cell 1, 124 – 131.en_US
dc.identifier.citedreferenceWoodhead AD, Setlow RB, Grist E ( 1980 ) DNA repair and longevity in three species of cold-blooded vertebrates. Exp. Gerontol. 15, 301 – 304.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.