Show simple item record

The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens

dc.contributor.authorLi, Yilinen_US
dc.contributor.authorAcerbo, Martin J.en_US
dc.contributor.authorRobinson, Terry E.en_US
dc.date.accessioned2010-06-01T20:25:05Z
dc.date.available2010-06-01T20:25:05Z
dc.date.issued2004-09en_US
dc.identifier.citationLi, Yilin; Acerbo, Martin J.; Robinson, Terry E. (2004). "The induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbens." European Journal of Neuroscience 20(6): 1647-1654. <http://hdl.handle.net/2027.42/73532>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73532
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15355332&dopt=citationen_US
dc.description.abstractRepeated exposure to cocaine increases the density of dendritic spines on medium spiny neurons in the nucleus accumbens (Acb) and pyramidal cells in the medial prefrontal cortex (mPFC). To determine if this is associated with the development of psychomotor sensitization, rats were given daily i.p. injections of 15 mg/kg of cocaine (or saline) for 8 days, either in their home cage (which failed to induce significant psychomotor sensitization) or in a distinct and relatively novel test cage (which induced robust psychomotor sensitization). Their brains were obtained 2 weeks after the last injection and processed for Golgi–Cox staining. In the Acb core (AcbC) cocaine treatment increased spine density only in the group that developed psychomotor sensitization (i.e. in the Novel but not Home group), and there was a significant positive correlation between the degree of psychomotor sensitization and spine density. In the Acb shell (AcbS) cocaine increased spine density to the same extent in both groups; i.e. independent of psychomotor sensitization. In the mPFC cocaine increased spine density in both groups, but to a significantly greater extent in the Novel group. Furthermore, when rats were treated at Home with a higher dose of cocaine (30 mg/kg), cocaine now induced psychomotor sensitization in this context, and also increased spine density in the AcbC. Thus, the context in which cocaine is experienced influences its ability to reorganize patterns of synaptic connectivity in the Acb and mPFC, and the induction of psychomotor sensitization is associated with structural plasticity in the AcbC and mPFC, but not the AcbS.en_US
dc.format.extent220452 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Federation of European Neuroscience Societiesen_US
dc.subject.otherCocaineen_US
dc.subject.otherDendritesen_US
dc.subject.otherDendritic Spinesen_US
dc.subject.otherFrontal Cortexen_US
dc.subject.otherRaten_US
dc.subject.otherSynaptic Plasticityen_US
dc.titleThe induction of behavioural sensitization is associated with cocaine-induced structural plasticity in the core (but not shell) of the nucleus accumbensen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.identifier.pmid15355332en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73532/1/j.1460-9568.2004.03612.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2004.03612.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceBadiani, A., Browman, K. E. & Robinson, T. E. ( 1995 ) Influence of novel versus home environments on sensitization to the psychomotor stimulant effects of cocaine and amphetamine. Brain Res., 674, 291 – 298.en_US
dc.identifier.citedreferenceBadiani, A., Oates, M. M., Day, H. E. W., Watson, S. J., Akil, H. & Robinson, T. E. ( 1998 ) Amphetamine-induced behavior, dopamine release, and c-fos mRNA expression: modulation by environmental novelty. J. Neurosci., 18, 10579 – 10593.en_US
dc.identifier.citedreferenceBadiani, A., Oates, M. M., Day, H. E. W., Watson, S. J., Akil, H. & Robinson, T. E. ( 1999 ) Environmental modulation of amphetamine-induced c-fos expression in D1 versus D2 striatal neurons. Behav. Brain Res., 103, 203 – 209.en_US
dc.identifier.citedreferencede Borchgrave, R., Rawlins, J. N., Dickinson, A. & Balleine, B. W. ( 2002 ) Effects of cytotoxic nucleus accumbens lesions on instrumental conditioning in rats. Exp. Brain Res., 144, 50 – 68.en_US
dc.identifier.citedreferenceBrowman, K. E., Badiani, A. & Robinson, T. E. ( 1998a ) The influence of environment on the induction of sensitization to the psychomotor activating effects of intravenous cocaine in rats is dose-dependent. Psychopharmacology, 137, 90 – 98.en_US
dc.identifier.citedreferenceBrowman, K. E., Badiani, A. & Robinson, T. E. ( 1998b ) Modulatory effect of environmental stimuli on the susceptibility to amphetamine sensitization: a dose-effect study in rats. J. Pharmacol. Exp. Ther., 287, 1007 – 1014.en_US
dc.identifier.citedreferenceCadoni, C. & Di Chiara, G. ( 1999 ) Reciprocal changes in dopamine responsiveness in the nucleus accumbens shell and core and in the dorsal caudate-putamen in rats sensitized to morphine. Neuroscience, 90, 447 – 455.en_US
dc.identifier.citedreferenceCadoni, C. & Di Chiara, G. ( 2000 ) Differential changes in accumbens shell and core dopamine in behavioral sensitization to nicotine. Eur. J. Pharmacol., 387, R23 – R25.en_US
dc.identifier.citedreferenceCadoni, C., Solinas, M. & Di Chiara, G. ( 2000 ) Psychostimulant sensitization: differential changes in accumbal shell and core dopamine. Eur. J. Pharmacol., 388, 69 – 76.en_US
dc.identifier.citedreferenceCardinal, R. N., Parkinson, J. A., Hall, J. & Everitt, B. J. ( 2002 ) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav Rev., 26, 321 – 352.en_US
dc.identifier.citedreferenceCorbit, L. H., Muir, J. L. & Balleine, B. W. ( 2001 ) The role of the nucleus accumbens in instrumental conditioning: Evidence of a functional dissociation between accumbens core and shell. J. Neurosci., 21, 3251 – 3260.en_US
dc.identifier.citedreferenceCrombag, H. S., Badiani, A. & Robinson, T. E. ( 1996 ) Signalled versus unsignalled intravenous amphetamine: large differences in the acute psychomotor response and sensitization. Brain Res., 722, 227 – 231.en_US
dc.identifier.citedreferenceDay, H. E. W., Badiani, A., Uslaner, J., Oates, M. M., Vittoz, N. M., Robinson, T. E., Watson, S. J. & Akil, H. ( 2001 ) Environmental novelty differentially affects amphetamine-induced c-fos mRNA expression in subregions of the bed nucleus of the stria terminalis and amygdala. J. Neurosci., 21, 732 – 740.en_US
dc.identifier.citedreferenceDe Vries, T. J., Schoffelmeer, A. N., Binnekade, R., Mulder, A. H. & Vanderschuren, L. J. ( 1998 ) Drug-induced reinstatement of heroin- and cocaine-seeking behaviour following long-term extinction is associated with expression of behavioural sensitization. Eur. J. Neurosci., 10, 3565 – 3571.en_US
dc.identifier.citedreferenceDe Vries, T. J., Schoffelmeer, A. N., Binnekade, R., Raaso, H. & Vanderschuren, L. J. ( 2002 ) Relapse to cocaine- and heroin-seeking behavior mediated by dopamine D2 receptors is time-dependent and associated with behavioral sensitization. Neuropsychopharmacology, 26, 18 – 26.en_US
dc.identifier.citedreferenceDi Ciano, P., Cardinal, R. N., Cowell, R. A., Little, S. J. & Everitt, B. J. ( 2001 ) Differential involvement of NMDA, AMPA/kainate, and dopamine receptors in the nucleus accumbens core in the acquisition and performance of pavlovian approach behavior. J. Neurosci., 21, 9471 – 9477.en_US
dc.identifier.citedreferenceEveritt, B. L., Cardinal, R. N., Hall, J., Parkinson, J. A. & Robbins, T. W. ( 2000 ) Differential involvement of amygdala subsystems in appetitive conditioning and drug addiction. In Aggleton, J. P., (ed.) The Amygdala: a Functional Analysis. Oxford University Press, New York, pp. 353 – 390.en_US
dc.identifier.citedreferenceGibb, R. & Kolb, B. ( 1998 ) A method for vibratome sectioning of Golgi-Cox stained whole rat brain. J. Neurosci. Meth., 79, 1 – 4.en_US
dc.identifier.citedreferenceGoldman-Rakic, P. S., Lidow, M. S., Smiley, J. F. & Williams, M. S. ( 1992 ) The anatomy of dopamine in monkey and human prefrontal cortex. J. Neural Transm., 36, 163 – 177.en_US
dc.identifier.citedreferenceGreenough, W. T., Withers, G. S. & Wallace, C. S. ( 1990 ) Morphological changes in the nervous system arising from behavioral experience: what is the evidence that they are involved in learning and memory?. In Squire, L. R. & Lindenlaub, E. (eds), The Biology of Memory, Symposia Medica Hoechst. F. K. Schattauder Verlag, New York, pp. 159 – 185.en_US
dc.identifier.citedreferenceGroenewegen, H. J., Berendse, H. W., Meredith, G. E., Haber, S. N., Voorn, P., Wolters, J. G. & Lohman, A. H. M. ( 1991 ) Functional anatomy of the ventral, limbic system-innervated striatum. In Willner, P. & Scheel-KrÜger, J. (eds), The Mesolimbic Dopamine System: from Motivation to Action. John Wiley & Sons, New York, pp. 19 – 59.en_US
dc.identifier.citedreferenceHall, J., Parkinson, J. A., Connor, T. M., Dickinson, A. & Everitt, B. J. ( 2001 ) Involvement of the central nucleus of the amygdala and nucleus accumbens core in mediating Pavlovian influences on instrumental behaviour. Eur. J. Neurosci., 13, 1984 – 1992.en_US
dc.identifier.citedreferenceHarmer, C. J. & Phillips, G. D. ( 1998 ) Enhanced appetitive conditioning following repeated pretreatment with d- amphetamine. Behav. Pharmacol., 9, 299 – 308.en_US
dc.identifier.citedreferenceHarmer, C. J. & Phillips, G. D. ( 1999 ) Enhanced dopamine efflux in the amygdala by a predictive, but not a non- predictive, stimulus: facilitation by prior repeated d-amphetamine. Neuroscience, 90, 119 – 130.en_US
dc.identifier.citedreferenceHÉdou, G., Jongen-Relo, A. L., Murphy, C. A., Heidbreder, C. A. & Feldon, J. ( 2002 ) Sensitized Fos expression in subterritories of the rat medial prefrontal cortex and nucleus accumbens following amphetamine sensitization as revealed by stereology. Brain Res., 950, 165 – 179.en_US
dc.identifier.citedreferenceHorger, B. A., Shelton, K. & Schenk, S. ( 1990 ) Preexposure sensitizes rats to the rewarding effects of cocaine. Pharm. Biochem. Behav., 37, 707 – 711.en_US
dc.identifier.citedreferenceIto, R., Dalley, J. W., Howes, S. R., Robbins, T. W. & Everitt, B. J. ( 2000 ) Dissociation in conditioned dopamine release in the nucleus accumbens core and shell in response to cocaine cues and during cocaine-seeking behavior in rats. J. Neurosci., 20, 7489 – 7495.en_US
dc.identifier.citedreferenceIto, R., Robbins, T. W. & Everitt, B. J. ( 2004 ) Differential control over cocaine-seeking behavior by nucleus accumbens core and shell. Nature Neurosci., 7, 389 – 397.en_US
dc.identifier.citedreferenceKalivas, P. W. ( 2004 ) Glutamate systems in cocaine addiction. Curr. Opin. Pharmacol., 4, 23 – 29.en_US
dc.identifier.citedreferenceKalivas, P. W. & McFarland, K. ( 2003 ) Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berlin), 168, 44 – 56.en_US
dc.identifier.citedreferenceKolb, B., Forgie, M., Gibb, R., Gorny, G. & Rowntree, S. ( 1998 ) Age, experience and the changing brain. Neurosci. Biobehav. Rev., 22, 143 – 159.en_US
dc.identifier.citedreferenceLett., B. T. ( 1989 ) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berlin), 98, 357 – 362.en_US
dc.identifier.citedreferenceLi, Y., Kolb, B. & Robinson, T. E. ( 2003 ) The location of persistent amphetamine-induced changes in the density of dendritic spines on medium spiny neurons in the nucleus accumbens and caudate-putamen. Neuropsychopharmacology, 238, 1082 – 1085.en_US
dc.identifier.citedreferenceLorrain, D. S., Arnold, G. M. & Vezina, P. ( 2000 ) Previous exposure to amphetamine increases incentive to obtain the drug: long-lasting effects revealed by the progressive ratio schedule. Behav. Brain Res., 107, 9 – 19.en_US
dc.identifier.citedreferenceMcFarland, K. & Kalivas, P. W. ( 2001 ) The circuitry mediating cocaine-induced reinstatement of drug-seeking behavior. J. Neurosci., 21, 8655 – 8663.en_US
dc.identifier.citedreferenceMead, A. N., Crombag, H. S. & Rocha, B. A. ( 2004 ) Sensitization of psychomotor stimulation and conditioned reward in mice: differential modulation by contextual learning. Neuropsychopharmacology, 29, 249 – 258.en_US
dc.identifier.citedreferenceMendrek, A., Blaha, C. D. & Phillips, A. G. ( 1998 ) Pre-exposure of rats to amphetamine sensitizes self-administration of this drug under a progressive ratio schedule. Psychopharmacology, 135, 416 – 422.en_US
dc.identifier.citedreferenceParkinson, J. A., Olmstead, M. C., Burns, L. H., Robbins, T. W. & Everitt, B. J. ( 1999 ) Dissociation in effects of lesions of the nucleus accumbens core and shell on appetitive pavlovian approach behavior and the potentiation of conditioned reinforcement and locomotor activity by d-amphetamine. J. Neurosci., 19, 2401 – 2411.en_US
dc.identifier.citedreferencePiazza, P. V., DeminiÈre, J. M., Le Moal, M. & Simon, H. ( 1989 ) Factors that predict individual vulnerability to amphetamine self-administration. Science, 245, 1511 – 1513.en_US
dc.identifier.citedreferencePiazza, P. V., Deroche, V., Rouge-Pont, F. & Le Moal, M. ( 1998 ) Behavioral and biological factors associated with individual vulnerability to psychostimulant abuse. NIDA Res. Monogr., 169, 105 – 133.en_US
dc.identifier.citedreferencePierce, R. C., Bell, K., Duffy, P. & Kalivas, P. W. ( 1996 ) Repeated cocaine augments excitatory amino acid transmission in the nucleus accumbens only in rats having developed behavioral sensitization. J. Neurosci., 16, 1550 – 1560.en_US
dc.identifier.citedreferencePierce, R. C. & Kalivas, P. W. ( 1995 ) Amphetamine produces sensitized increases in locomotion and extracellular dopamine preferentially in the nucleus accumbens shell of rats administered repeated cocaine. J. Pharmacol. Exp. Ther., 275, 1019 – 1029.en_US
dc.identifier.citedreferencePierce, R. C. & Kalivas, P. W. ( 1997 ) A circuitry model of the expression of behavioral sensitization to amphetamine-like psychostimulants. Brain Res. Rev., 25, 192 – 216.en_US
dc.identifier.citedreferencePierre, P. J. & Vezina, P. ( 1998 ) D1 dopamine receptor blockade prevents the facilitation of amphetamine self-administration induced by prior exposure to the drug. Psychopharmacology (Berlin), 138, 159 – 166.en_US
dc.identifier.citedreferenceRobinson, T. E. & Becker, J. B. ( 1986 ) Enduring changes in brain and behavior produced by chronic amphetamine administration: a review and evaluation of animal models of amphetamine psychosis. Brain Res. Rev., 11, 157 – 198.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 1993 ) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res. Rev., 18, 247 – 291.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 2000 ) The psychology and neurobiology of addiction: an incentive-sensitization view. Addiction, 95, S91 – S117.en_US
dc.identifier.citedreferenceRobinson, T. E. & Berridge, K. C. ( 2003 ) Addiction. Annu. Rev. Psychol, 54, 25 – 53.en_US
dc.identifier.citedreferenceRobinson, T. E., Gorny, G., Mitton, E. & Kolb, B. ( 2001 ) Cocaine self-administration alters the morphology of dendrites and dendritic spines in the nucleus accumbens and neocortex. Synapse, 39, 257 – 266.en_US
dc.identifier.citedreferenceRobinson, T. E., Jurson, P. A., Bennett, J. A. & Bentgen, K. M. ( 1988 ) Persistent sensitization of dopamine neurotransmission in ventral striatum (nucleus accumbens) produced by past experience with (+)-amphetamine: a microdialysis study in freely moving rats. Brain Res., 462, 211 – 222.en_US
dc.identifier.citedreferenceRobinson, T. E. & Kolb, B. ( 1997 ) Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine. J. Neurosci., 17, 8491 – 8497.en_US
dc.identifier.citedreferenceRobinson, T. E. & Kolb, B. ( 1999 ) Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur. J. Neurosci., 11, 1598 – 1604.en_US
dc.identifier.citedreferenceSegal, D. S. & Mandell, A. J. ( 1974 ) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol. Biochem. Behav., 2, 249 – 255.en_US
dc.identifier.citedreferenceSesack, S. R. & Pickel, V. M. ( 1990 ) In the rat medial nucleus accumbens, hippocampal and catecholaminergic terminals converge on spiny neurons and are in apposition to each other. Brain Res., 527, 266 – 279.en_US
dc.identifier.citedreferenceSmith, A. D. & Bolam, J. P. ( 1990 ) The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurons. Trends Neurosci., 13, 259 – 265.en_US
dc.identifier.citedreferenceStewart, J. & Badiani, A. ( 1993 ) Tolerance and sensitization to the behavioral effects of drugs. Behav. Pharmacol., 4, 289 – 312.en_US
dc.identifier.citedreferenceTaylor, J. R. & Horger, B. A. ( 1999 ) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology, 142, 31 – 40.en_US
dc.identifier.citedreferenceTaylor, J. R. & Jentsch, J. D. ( 2001 ) Repeated intermittent administration of psychomotor stimulant drugs alters the acquisition of Pavlovian approach behavior in rats: differential effects of cocaine, d-amphetamine and 3,4-methylenedioxymethamphetamine (‘Ecstasy’). Biol. Psychiatry, 50, 137 – 143.en_US
dc.identifier.citedreferenceTodtenkopf, M. S., Mihalakopoulos, A. & Stellar, J. R. ( 2002 ) Withdrawal duration differentially affects c-fos expression in the medial prefrontal cortex and discrete subregions of the nucleus accumbens in cocaine-sensitized rats. Neuroscience, 114, 1061 – 1069.en_US
dc.identifier.citedreferenceUslaner, J. M., Crombag, H. S., Ferguson, S. M. & Robinson, T. E. ( 2003a ) Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur. J. Neurosci., 17, 2180 – 2186.en_US
dc.identifier.citedreferenceUslaner, J. M., Norton, C. S., Watson, S. J., Akil, H. & Robinson, T. E. ( 2003b ) Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J. Neurochem., 85, 105 – 114.en_US
dc.identifier.citedreferenceVanderschuren, L. J. & Kalivas, P. W. ( 2000 ) Alterations in dopaminergic and glutamatergic transmission in the induction and expression of behavioral sensitization: a critical review of preclinical studies. Psychopharmacology, 151, 99 – 120.en_US
dc.identifier.citedreferenceVezina, P. ( 2004 ) Sensitization of midbrain dopamine neuron reactivity and the self-administration of psychomotor stimulant drugs. Neurosci. Biobehav. Rev., 27, 827 – 839.en_US
dc.identifier.citedreferenceWhite, F. J. & Kalivas, P. W. ( 1998 ) Neuroadaptations involved in amphetamine and cocaine addiction. Drug Alcohol Depend., 51, 141 – 153.en_US
dc.identifier.citedreferenceWolf, M. E. ( 1998 ) The role of excitatory amino acids in behavioral sensitization to psychomotor stimulants. Prog. Neurobiol., 54, 679 – 720.en_US
dc.identifier.citedreferenceWolf, M. E., White, F. J. & Hu, X. T. ( 1994 ) MK-801 prevents alterations in the mesoaccumbens dopamine system associated with behavioral sensitization to amphetamine. J. Neurosci., 14, 1735 – 1745.en_US
dc.identifier.citedreferenceWoolley, C. S. ( 1998 ) Estrogen-mediated structural and functional synaptic plasticity in the female rat hippocampus. Horm. Behav., 34, 140 – 148.en_US
dc.identifier.citedreferenceWyvell, C. L. & Berridge, K. C. ( 2001 ) Incentive sensitization by previous amphetamine exposure: increased cue- triggered ‘wanting’ for sucrose reward. J. Neurosci., 21, 7831 – 7840.en_US
dc.identifier.citedreferenceZahm, D. S. ( 2000 ) An integrative neuroanatomical perspective on some subcortical substrates of adaptive responding with emphasis on the nucleus accumbens. Neurosci. Biobehav. Rev., 24, 85 – 105.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.