Show simple item record

Genetic Studies of the Pyridoxine Mutant in Variety Two of Tetrahymena pyriformis *

dc.contributor.authorElliott, Alfred M.en_US
dc.contributor.authorClark, Gordon M.en_US
dc.date.accessioned2010-06-01T20:26:27Z
dc.date.available2010-06-01T20:26:27Z
dc.date.issued1958-11en_US
dc.identifier.citationELLIOTT, ALFRED M.; CLARK, GORDON M. (1958). "Genetic Studies of the Pyridoxine Mutant in Variety Two of Tetrahymena pyriformis * ." Journal of Eukaryotic Microbiology 5(4): 235-240. <http://hdl.handle.net/2027.42/73554>en_US
dc.identifier.issn1066-5234en_US
dc.identifier.issn1550-7408en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73554
dc.description.abstractWhen two strains cf T. pyriformis that do not require exogenous pyridoxine are crossed, all progeny grow without the vitamin. Offspring from crosses of two pyridoxine requiring clones require pyridoxine with the exception of a few which will grow without pyridoxine. The ratio is approximately 3:1 favoring the pyridoxine requiring category. In matings involving the homozygous dominant pyridoxine requiring clones with the double recessive mutant, that is +/+ X p/p, all of the resulting progeny need pyridoxine. Test crossing these heterozygotes (+/p) with the parental pyridoxine non-requiring clones (p/p) gives offspring approximating a 1:1 ratio. Matings between two heterozygotes derived from breeding experiments also yield progeny in approximately 3 pyridoxine requiring: 1 pyridoxine non-requiring. All data indicate selection for the heterozygote in the population and a possible selection against either homozygote. The great abundance of heterozygotes and rarity of recessive homozygotes in natural habitats corroborates these findings. The genetic evidence supports a single gene hypothesis although the possibility of multiple closely linked genes cannot be ignored. There is also the possibility that a dominant suppressor gene may function in blocking the activity of the pyridoxine mutant genes. Moreover, if this gene exists it may be incompletely dominant since the heterozygote grows slightly on deficient media.en_US
dc.format.extent547649 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1958 by the Society of Protozoologistsen_US
dc.titleGenetic Studies of the Pyridoxine Mutant in Variety Two of Tetrahymena pyriformis *en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelBiological Chemistryen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Zoology, University of Michigan, Ann Arboren_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73554/1/j.1550-7408.1958.tb02559.x.pdf
dc.identifier.doi10.1111/j.1550-7408.1958.tb02559.xen_US
dc.identifier.sourceJournal of Eukaryotic Microbiologyen_US
dc.identifier.citedreferenceElliott, A. M. ( 1950 ). The growth factor requirements of T. geleii E. Physiol. Zool., 23, 85 – 91.en_US
dc.identifier.citedreferenceElliott, A. M. & Hayes, R. E. ( 1953 ). Mating types in Tetrahymena. Biol. Bull., 105, 269 – 284.en_US
dc.identifier.citedreferenceElliott, A. M. & Hayes, R. E. ( 1955 ). Tetrahymena from Mexico, Panama, and Colombia, with special reference to sexuality. J. Protozool., 2, 75 – 80.en_US
dc.identifier.citedreferenceElliott, A. M. & Clark, G. M. ( 1955 ). Strains of Tetrahymena pyriformis that grow without serine. J. Protozool., 2 ( Supplement ), 8.en_US
dc.identifier.citedreferenceElliott, A. M. & Clark, G. M. ( 1956 ). Strains of Tetrahymena pyriformis that grow without pyridoxine. J. Protozool., 3 ( supplement ). 32.en_US
dc.identifier.citedreferenceElliott, A. M. & Clark, G. M. ( 1956 ). The induction of haploidy in Tetrahymena pyriformis following X-irradiation. J. Protozool., 3, 181 – 188.en_US
dc.identifier.citedreferenceElliott, A. M. & Clark, G. M. ( 1957 ). The mating type system in variety nine of Tetrahymena pyriformis. Biol. Bull., 113, 334.en_US
dc.identifier.citedreferenceElliott, A. M. & Clark, G. M. ( 1957 ). Genetic studies of the serine mutant in variety nine of T. pyriformis. J. Protozool., ( in press ).en_US
dc.identifier.citedreferenceKidder, G. W. & Dewey, V. C. ( 1951 ). The biochemistry of ciliates in pure culture. In: Lwoff, A. ( ed. ), The Biochemistry and Physiology of Protozoa, pp. 323 – 400.en_US
dc.identifier.citedreferenceLerner, I. M. ( 1954 ). Genetic Homeostasis. John Wiley & Sons, Inc., New York.en_US
dc.identifier.citedreferenceMitchell, M. B. ( 1955 ). Aberrant recombination of pyridoxine mutants in Neurospora. Proc. Natl. Acad. Sci., 41, 215 – 220.en_US
dc.identifier.citedreferenceMiller, C. A. & van Wagtendonk, W. J. ( 1956 ). The essential metabolites of a strain of Paramecium aurelia (Stock 47.8) and a comparison of the growth rates of different strains of Paramecium aurelia in axenic medium. J. Gen Microbiol., 15, 280 – 291.en_US
dc.identifier.citedreferenceNanney. D. L. & Caughey, P. A. ( 1953 ). Mating type determination in Tetrahymena pyriformis. Proc. Natl. Acad. Sci., 39 ( 10 ), 1057 – 1063.en_US
dc.identifier.citedreferenceNathan, H. A. & Cowperthwaite, J. ( 1954 ). Use of the trypanosomid flagellate, Crithidia fasciculata, for evaluating antimalarials. Proc. Soc. Exptl. Biol. & Med., 85, 117 – 119.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.