Show simple item record

Rescue and Regrowth of Sensory Nerves Following Deafferentation by Neurotrophic Factors

dc.contributor.authorAltschuler, Richard A.en_US
dc.contributor.authorCho, Y.en_US
dc.contributor.authorYlikoski, J.en_US
dc.contributor.authorPirvola, U.en_US
dc.contributor.authorMagal, Ellaen_US
dc.contributor.authorMiller, J. M.en_US
dc.date.accessioned2010-06-01T20:26:41Z
dc.date.available2010-06-01T20:26:41Z
dc.date.issued1999-11en_US
dc.identifier.citationALTSCHULER, R. A.; CHO, Y.; YLIKOSKI, J.; PIRVOLA, U.; MAGAL, E.; MILLER, J. M. (1999). "Rescue and Regrowth of Sensory Nerves Following Deafferentation by Neurotrophic Factors." Annals of the New York Academy of Sciences 884(1 OTOTOXICITY: Basic Science and Clinical Applications ): 305-311. <http://hdl.handle.net/2027.42/73558>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73558
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=10842602&dopt=citationen_US
dc.description.abstractTrauma and loss of cochlear inner hair cells causes a series of events that result first in the retraction of the peripheral processes of the auditory nerve, scar formation in the organ of Corti, and over the course of weeks to months (depending on the species) the loss of auditory nerve cell bodies (spiral ganglion cells). Neurotrophic factors play an important role in the mature nervous system as survival factors for maintenance and protection and also can play a role in regrowth. Studies in the cochlea now show that application of exogenous neurotrophic factors can enhance survival of spiral ganglion cells after deafness and induce regrowth of peripheral processes, perhaps by replacing lost endogenous factors. Combinations of factors may be most effective for achieving greatest survival and regrowth. Our studies find that brain-derived neurotrophic factor (BDNF) and glial-line-derived neurotrophic factor (GDNF) are very effective at enhancing spiral ganglion cell survival following deafness from ototoxic drugs or noise. It has also been found that BDNF plus fibroblast growth factor (FGF) is very effective at inducing process regrowth. Electrical stimulation also acts to enhance spiral ganglion cell survival, and the combination of electrical stimulation and neurotrophic factors could prove a most effective intervention.en_US
dc.format.extent216677 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsNew York Academy of Sciences 1999en_US
dc.titleRescue and Regrowth of Sensory Nerves Following Deafferentation by Neurotrophic Factorsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumKresge Hearing Research Institute, University of Michigan, 1301 East Ann Street, Ann Arbor, Michigan 48109–0506, USAen_US
dc.contributor.affiliationumDepartment of Anatomy and Cell Biology, University of Michigan, Ann Arbor, Michigan 48109–0506, USAen_US
dc.contributor.affiliationotherInstitute of Biotechnology, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-0014 Helsinki, Finlanden_US
dc.contributor.affiliationotherDepartment of Neurobiology, Amgen Inc., Thousand Oaks, California 91320, USAen_US
dc.identifier.pmid10842602en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73558/1/j.1749-6632.1999.tb08650.x.pdf
dc.identifier.doi10.1111/j.1749-6632.1999.tb08650.xen_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceMattson, M. P., & K. Furakawa. 1996. Programmed cell life: anti-apoptotic signaling and therapeutic strategies for neurodegenerative disorders. Restor. Neurol. Neurosci. 9: 191 – 205.en_US
dc.identifier.citedreferenceSpoendlin, H. 1975. Retrogtade degeneration of the cochlear nerve. Acta Otolaryngol. (Stockh.) 79: 266 – 275.en_US
dc.identifier.citedreferenceYlikoski, J., J. Wersall & B. Bjorkroth. 1974. Degeneration of neural elements in the cochlea of the guinea pig after damage to the organ of Corti by ototoxic antibiotics. Acta Otolaryngol. (Stockh.), 326 ( Suppl. ): 23 – 41.en_US
dc.identifier.citedreferenceWebster, M. & D. B. Webster. 1981. Spiral ganglion neuron loss following organ of Corti loss: a quantitative study. Brain Res. 212: 17 – 30.en_US
dc.identifier.citedreferenceJyung, R. W., J. M. Miller & S. C. Cannon. 1989. Evaluation of eighth nerve integrity by the electrically evoked middle latency response. Otolaryngol. Head Neck Surg. 101 ( 6 ): 670 – 682.en_US
dc.identifier.citedreferenceHartshorn, D. O., J. M. Miller & R. A. Altschuler. 1991. Protective effect of electrical stimulaiton in the deafened guinea pig cochlea. Otolaryngol. Head Neck Surg. 104: 311 – 319.en_US
dc.identifier.citedreferenceLousteau, R. J., 1987. Increased spiral ganglion survival in electrically stimulated, deafened guinea pig cocheae. Laryngoscope 97: 836 – 842.en_US
dc.identifier.citedreferenceLeake, P. A., G. T. Hradek, S. J. Rebscher, et al. 1991. Chronic intracochlear electrical stimulation induces selective survival of spiral ganglion neurons in neonatally deafened cats. Hear. Res. 54: 251 – 271.en_US
dc.identifier.citedreferenceMiller, J. M., D. Chi, P. Kruszka, et al. 1997. Neurotropins can enhance spiral ganglion cell survival after inner hair cell loss. Int. J. Dev. Neurosci. 15: 631 – 643.en_US
dc.identifier.citedreference10 Saito, H., R. A. Altschuler & J. M. Miller. 1997. Fos-immunoreactivity expressed in the spiral ganglion and cochlear nucleus following site specific bipolar cochlear electrical stimulation (Abstr.). Association for Research in Otolaryngology.en_US
dc.identifier.citedreferenceDavies, A. M., 1995. The Bcl-2 family of proteins, and the regulation of neuronal survival. Trends Neurosci. 18: 355 – 358.en_US
dc.identifier.citedreferenceLikoski, J., U. Pirvola, M. Moshnyakov, et al. 1993. Expression patterns of neurotrophins and their receptor mRNAs in the rat inner ear. Hear. Res. 65: 69 – 78.en_US
dc.identifier.citedreferenceWheleler, E. F., M. Bothwell, L. C. Schecterson & C. S. von Bartheld. 1994. Expression of BDNF and NT3 mRNA in hair cells of the organ of Corti: Quantitative analysis in developing rats. Hear. Res. 73: 46 – 56.en_US
dc.identifier.citedreferenceYlikoski, J., U. Pirvola, P. Suvanto, et al. 1998. Guinea pig auditory neurons are protected by GDNF from degeneration after noise trauma. Hear. Res. In press.en_US
dc.identifier.citedreferenceHegarty, J. L., A. R. Kay & S. H. Green. 1997. Trophic support of cultured spiral ganglion neurons by depolarization exceeds and is additive with that by neurotrophins of cAMP and requires elevation of [Ca 2+ ] I within a set range. J. Neurosci. 17 ( 6 ): 1859 – 1970.en_US
dc.identifier.citedreferenceLuo, L., H. Koutnouyan, A. Baird, et al. 1993. Acidic and basic FGF mRNA in the adult and developing rat cochlea. Hear. Res. 69: 182 – 193.en_US
dc.identifier.citedreferencePirvola, U., Y. Cao, C. Oellig, et al. 1995. The site of action of neuronal acidic fibroblast growth factor is the organ of Corti of the rat cochlea. Proc. Natl. Acad. Sci. USA 92: 9269 – 9273.en_US
dc.identifier.citedreferenceArzella, P. L., G. M. Clark, R.K. Sheperd, et al. 1997. LIF potentiates the NT-3-mediated survival of spiral ganglia neurones in vitro. Neuroreport 8 ( 7 ): 1641 – 1644.en_US
dc.identifier.citedreferenceBrown, J. N., J. M. Miller, R. A. Altschuler, et al. 1993. Osmotic pump implants for chronic infusion of drugs into the inner ear. Hear. Res. 70: 167 – 172.en_US
dc.identifier.citedreferenceRaphael, Y., J. C. Frisancho & B. J. Roessler. 1996. Adenovirus-mediated gene transfer into guinea pig cochlear cells in vivo. Neurosci. Lett. 207: 137 – 141.en_US
dc.identifier.citedreferenceStaecker, H., R. Gabaizadeh, H. Federoff, et al. 1998. Brain-derived neurotrophic factor gene therapy prevents spiral ganglion degeneration after hair cell loss. Otolaryngol. Head Neck Surg. 119: 7 – 13.en_US
dc.identifier.citedreferenceStaecker, H., R. Kopke, B. Malagrange, et al. 1996. NT-3 and/or BDNF therapy prevents loss of auditory neurons following loss of hair cells. Neuroreport 7: 889 – 894.en_US
dc.identifier.citedreferenceErnfors, P., M. L. Duan, W.M. El Shamy, et al. 1996. Protection of auditory neurons from aminoglycoside toxicity by neurotrophin-3. Nat. Med. 2 ( 4 ): 463 – 467.en_US
dc.identifier.citedreferenceSchindler, R. A., H. B. Gladstone, N. Scott, et al. 1995. Enhanced preservation of the auditory nerve following cochlear perfusion with nerve growth factor. Am. J. Otol. 16 ( 3 ): 304 – 309.en_US
dc.identifier.citedreferenceShah, S. B., H. B. Gladstone, H. Williams, et al. 1995. An extended study: protective effects of nerve growth factor in neomycin-induced auditory neural degeneration. Am. J. Otol. 16 ( 3 ): 310 – 314.en_US
dc.identifier.citedreferenceAltschuler, R. A., J. M. Miller, A. Mitchell, et al. 1997. GDNF enhances survival of auditory neurons following drug induced deafness. Abstr. Soc. Neurosci. 1: 619.en_US
dc.identifier.citedreferencePuel, J. L., S. Saffiedine, G. D'aldin, et al. 1995. Synaptic regeneration and functional recovery after excitotoxic injury in the guinea pig cochlea. C. R. Acad. Sci.-Ser. III, Sci. Vie 318 ( 1 ): 67 – 75.en_US
dc.identifier.citedreference28 Puel, J. L., G. D'aldin, S. Saffiedine, et al. 1996. Excitotoxicity and plasticity of IHC-auditory nerve contributes to both temporary and permanent threshold shift. In Scientific Basis of Noise-Induced Hearing Loss, A. Axelsson, H. Borchgrevink, R. P. Hamernik, P. A. Hellstrom, D. Henderson, and R. J. Salvi, Eds.: 36–42. Thieme Medical Publishers.en_US
dc.identifier.citedreferenceBohne, B. A., & G. W. Harding. 1992. Neural regeneration in the noise-damaged chinchilla cochlea. Laryngoscope 102 ( 6 ): 693 – 703.en_US
dc.identifier.citedreferenceParkins, C. W., & J. Colombo. 1987. Auditory-nerve single-nerve thresholds to electrical stimulation from scala tympani electrodes. Hear. Res. 31: 267 – 286.en_US
dc.identifier.citedreferenceColombo, J. & C. W. Parkins. 1987. A model of electrical excitation of the mammalian auditory nerve neuron. Hear. Res. 31: 287 – 312.en_US
dc.identifier.citedreferenceStypulkowski, P. H., & C. van den Honert. 1984. Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hear. Res. 14: 205 – 223.en_US
dc.identifier.citedreferenceVan den Honert, C. & P. H. Stypulkowski. 1984. Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings. Hear. Res. 14: 225 – 243.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.