Show simple item record

Transforming Growth Factor-Beta1 Gene Transfer is Associated with the Development of Regulatory Cells

dc.contributor.authorCsencsits, Keri L.en_US
dc.contributor.authorWood, Sherri Chanen_US
dc.contributor.authorLu, Guanyien_US
dc.contributor.authorBishop, D. Keithen_US
dc.date.accessioned2010-06-01T20:27:44Z
dc.date.available2010-06-01T20:27:44Z
dc.date.issued2005-10en_US
dc.identifier.citationCsencsits, Keri; Wood, Sherri Chan; Lu, Guanyi; Bishop, D. Keith (2005). "Transforming Growth Factor-Beta1 Gene Transfer is Associated with the Development of Regulatory Cells." American Journal of Transplantation 5(10): 2378-2384. <http://hdl.handle.net/2027.42/73575>en_US
dc.identifier.issn1600-6135en_US
dc.identifier.issn1600-6143en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73575
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=16162185&dopt=citationen_US
dc.format.extent174854 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherMunksgaard International Publishersen_US
dc.publisherBlackwell Publishing Ltden_US
dc.rightsBlackwell Munksgaard 2005en_US
dc.subject.otherAdenovirusesen_US
dc.subject.otherGene Therapyen_US
dc.subject.otherGraft Acceptanceen_US
dc.subject.otherHearten_US
dc.subject.otherTransforming Growth Factor-beta (TGF-Β)en_US
dc.subject.otherT Cellsen_US
dc.titleTransforming Growth Factor-Beta1 Gene Transfer is Associated with the Development of Regulatory Cellsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMedicine (General)en_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Microbiology and Immunology, University of Michigan Medical Center, Ann Arbor, Michigan, USAen_US
dc.contributor.affiliationotherSection of General Surgeryen_US
dc.identifier.pmid16162185en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73575/1/j.1600-6143.2005.01042.x.pdf
dc.identifier.doi10.1111/j.1600-6143.2005.01042.xen_US
dc.identifier.sourceAmerican Journal of Transplantationen_US
dc.identifier.citedreferenceChen D, Sung R, Bromberg JS. Gene therapy in transplantation. Transpl Immunol 2002; 9: 301 – 314.en_US
dc.identifier.citedreferenceGiannoukakis N, Thomson A, Robbins P. Gene therapy in transplantation. Gene Ther 1999; 6: 1499 – 1511.en_US
dc.identifier.citedreferenceWilson JM. Adenoviruses as gene-delivery vehicles. N Engl J Med 1996; 334: 1185 – 1187.en_US
dc.identifier.citedreferenceKay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001; 7: 33 – 40.en_US
dc.identifier.citedreferenceVilquin JT, Guerette B, Kinoshita I et al. FK506 immunosuppression to control the immune reactions triggered by first-generation adenovirus-mediated gene transfer. Hum Gene Ther 1995; 6: 1391 – 1401.en_US
dc.identifier.citedreferenceYang Y, Jooss KU, Su Q, Ertl HC, Wilson JM. Immune responses to viral antigens versus transgene product in the elimination of recombinant adenovirus-infected hepatocytes in vivo. Gene Ther 1996; 3: 137 – 144.en_US
dc.identifier.citedreferenceYang Y, Li Q, Ertl HC, Wilson JM. Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J Virol 1995; 69: 2004 – 2015.en_US
dc.identifier.citedreferenceChan SY, Li K, Piccotti JR et al. Tissue-specific consequences of the anti-adenoviral immune response: implications for cardiac transplants. Nat Med 1999; 5: 1143 – 1149.en_US
dc.identifier.citedreferenceLetterio JJ, Roberts AB. Regulation of immune responses by TGF-Β. Annu Rev Immunol 1998; 16: 137 – 161.en_US
dc.identifier.citedreferenceSchmitt E, Hoehn P, Huels C et al. T helper type 1 development of naive CD4+ T cells requires the coordinate action of interleukin-12 and interferon-Γ and is inhibited by transforming growth factor-Β. Eur J Immunol 1994; 24: 793 – 798.en_US
dc.identifier.citedreferenceGamble JR, Khew-Goodall Y, Vadas MA. Transforming growth factor-Β inhibits E-selectin expression on human endothelial cells. J Immunol 1993; 150: 4494 – 4503.en_US
dc.identifier.citedreferenceInge TH, Hoover SK, Susskind BM, Barrett SK, Bear HD. Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor Β1. Cancer Res 1992; 52: 1386 – 1392.en_US
dc.identifier.citedreferenceHolder MJ, Knox K, Gordon J. Factors modifying survival pathways of germinal center B cells. Glucocorticoids and transforming growth factor-Β, but not cyclosporin A or anti-CD19, block surface immunoglobulin-mediated rescue from apoptosis. Eur J Immunol 1992; 22: 2725 – 2728.en_US
dc.identifier.citedreferenceLomo J, Blomhoff HK, Beiske K, Stokke T, Smeland EB. TGF-Β1 and cyclic AMP promote apoptosis in resting human B lymphocytes. J Immunol 1995; 154: 1634 – 1643.en_US
dc.identifier.citedreferenceBogdan C, Nathan C. Modulation of macrophage function by transforming growth factor Β interleukin-4, and interleukin-10. Ann N Y Acad Sci 1993; 685: 713 – 739.en_US
dc.identifier.citedreferenceQin L, Chavin KD, Ding Y et al. Multiple vectors effectively achieve gene transfer in a murine cardiac transplantation model. Immunosuppression with TGF-beta 1 or vIL-10. Transplantation 1995; 59: 809 – 816.en_US
dc.identifier.citedreferenceBrauner R, Nonoyama M, Laks H et al. Intracoronary adenovirus-mediated transfer of immunosuppressive cytokine genes prolongs allograft survival. J Thorac Cardiovasc Surg 1997; 114: 923 – 933.en_US
dc.identifier.citedreferenceChan SY, Goodman RE, Szmuszkovicz JR, Roessler B, Eichwald EJ, Bishop DK. DNA-liposome versus adenoviral mediated gene transfer of transforming growth factor Β1 in vascularized cardiac allografts: differential sensitivity of CD4+ and CD8+ T cells to transforming growth factor Β1. Transplantation 2000; 70: 1292 – 1301.en_US
dc.identifier.citedreferenceCsencsits KL, Bishop DK. Contrasting alloreactive CD4+ and CD8+ T cells: there's more to it than MHC restriction. Am J Transplant 2003; 3: 107 – 115.en_US
dc.identifier.citedreferenceWood KJ, Sakaguchi S. Regulatory T cells in transplantation tolerance. Nat Rev Immunol 2003; 3: 199 – 210.en_US
dc.identifier.citedreferenceBrunner AM, Marquardt H, Malacko AR, Lioubin MN, Purchio AF. Site-directed mutagenesis of cysteine residues in the pro region of the transforming growth factor Β1 precursor. Expression and characterization of mutant proteins. J Biol Chem 1989; 264: 13660 – 13664.en_US
dc.identifier.citedreferenceRoessler BJ, Hartman JW, Vallance DK, Latta JM, Janich SL, Davidson BL. Inhibition of interleukin-1-induced effects in synoviocytes transduced with the human IL-1 receptor antagonist cDNA using an adenoviral vector. Hum Gene Ther 1995; 6: 307 – 316.en_US
dc.identifier.citedreferenceDanielpour D, Dart LL, Flanders KC, Roberts AB, Sporn MB. Immunodetection and quantitation of the two forms of transforming growth factor-Β (TGF-Β1 and TGF-Β2) secreted by cells in culture. J Cell Physiol 1989; 138: 79 – 86.en_US
dc.identifier.citedreferenceCorry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of hearts in mice. The role of H-2D, H-2K, and non-H-2 antigens in rejection. Transplantation 1973; 16: 343 – 350.en_US
dc.identifier.citedreferenceLu G, Bishop DK. Theoretical and technical considerations for gene transfer into vascularized cardiac transplants. In: Metzger JM, ed. Methods in molecular biology: cardiac cell and gene transfer: principals, protocols, and applications. Totowa, New Jersey: Humana Press Inc, 2003: 135.en_US
dc.identifier.citedreferenceNathan MJ, Mold JE, Wood SC et al. Requirement for donor and recipient CD40 expression in cardiac allograft rejection: induction of Th1 responses and influence of donor-derived dendritic cells. J Immunol 2004; 172: 6626 – 6633.en_US
dc.identifier.citedreferenceCobbold SP, Castejon R, Adams E et al. Induction of foxP3 + regulatory T cells in the periphery of T cell receptor transgenic mice tolerized to transplants. J Immunol 2004; 172: 6003 – 6010.en_US
dc.identifier.citedreferenceHori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003; 299: 1057 – 1061.en_US
dc.identifier.citedreferenceFontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol 2003; 4: 330 – 336.en_US
dc.identifier.citedreferenceQin L, Ding Y, Pahud DR, Chang E, Imperiale MJ, Bromberg JS. Promoter attenuation in gene therapy: interferon-Γ and tumor necrosis factor-Α inhibit transgene expression. Hum Gene Ther 1997; 8: 2019 – 2029.en_US
dc.identifier.citedreferenceFu S, Zhang N, Yopp AC et al. TGF-Β induces Foxp3 + T-regulatory cells from CD4 + CD25 - precursors. Am J Transplant 2004; 4: 1614 – 1627.en_US
dc.identifier.citedreferenceChen W, Jin W, Hardegen N et al. Conversion of peripheral CD4 + CD25 − naive T cells to CD4 + CD25 + regulatory T cells by TGF-Β induction of transcription factor Foxp3. J Exp Med 2003; 198: 1875 – 1886.en_US
dc.identifier.citedreferenceFu S, Yopp AC, Mao X et al. CD4 + CD25 + CD62 + T-regulatory cell subset has optimal suppressive and proliferative potential. Am J Transplant 2004; 4: 65 – 78.en_US
dc.identifier.citedreferencePiccirillo CA, Shevach EM. Cutting edge: control of CD8 + T cell activation by CD4 + CD25 + immunoregulatory cells. J Immunol 2001; 167: 1137 – 1140.en_US
dc.identifier.citedreferenceLin CY, Graca L, Cobbold SP, Waldmann H. Dominant transplantation tolerance impairs CD8 + T cell function but not expansion. Nat Immunol 2002; 3: 1208 – 1213.en_US
dc.identifier.citedreferencevan Maurik A, Herber M, Wood KJ, Jones ND. Cutting edge: CD4 + CD25 + alloantigen-specific immunoregulatory cells that can prevent CD8 + T cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol 2002; 169: 5401 – 5404.en_US
dc.identifier.citedreferenceNathan MJ, Yin D, Eichwald EJ, Bishop DK. The immunobiology of inductive anti-CD40L therapy in transplantation: allograft acceptance is not dependent upon the deletion of graft-reactive T cells. Am J Transplant 2002; 2: 323 – 332.en_US
dc.identifier.citedreferenceYin D, Dujovny N, Ma L et al. IFN-Γ production is specifically regulated by IL-10 in mice made tolerant with anti-CD40 ligand antibody and intact active bone. J Immunol 2003; 170: 853 – 860.en_US
dc.identifier.citedreferencePiccotti JR, Li K, Chan SY et al. Alloantigen-reactive Th1 development in IL-12-deficient mice. J Immunol 1998; 160: 1132 – 1138.en_US
dc.identifier.citedreferenceCarter LL, Murphy KM. Lineage-specific requirement for signal transducer and activator of transcription (Stat)4 in interferon Γ production from CD4 + versus CD8 + T cells. J Exp Med 1999; 189: 1355 – 1360.en_US
dc.identifier.citedreferenceSzabo SJ, Sullivan BM, Stemmann C, Satoskar AR, Sleckman BP, Glimcher LH. Distinct effects of T-bet in TH1 lineage commitment and IFN-Γ production in CD4 and CD8 T cells. Science 2002; 295: 338 – 342.en_US
dc.identifier.citedreferenceGorelik L, Constant S, Flavell RA. Mechanism of transforming growth factor Β-induced inhibition of T helper type 1 differentiation. J Exp Med 2002; 195: 1499 – 1505.en_US
dc.identifier.citedreferencePearce EL, Mullen AC, Martins GA et al. Control of effector CD8 + T cell function by the transcription factor Eomesodermin. Science 2003; 302: 1041 – 1043.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.