Show simple item record

Distribution and Acute Stressor-Induced Activation of Corticotrophin-Releasing Hormone Neurones in the Central Nervous System of Xenopus laevis

dc.contributor.authorYao, Mengen_US
dc.contributor.authorWestphal, N. J.en_US
dc.contributor.authorDenver, Robert Johnen_US
dc.date.accessioned2010-06-01T20:28:22Z
dc.date.available2010-06-01T20:28:22Z
dc.date.issued2004-11en_US
dc.identifier.citationYao, M.; Westphal, N. J.; Denver, R. J. (2004). "Distribution and Acute Stressor-Induced Activation of Corticotrophin-Releasing Hormone Neurones in the Central Nervous System of Xenopus laevis ." Journal of Neuroendocrinology 16(11): 880-893. <http://hdl.handle.net/2027.42/73585>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73585
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15584929&dopt=citationen_US
dc.description.abstractIn mammals, corticotrophin-releasing hormone (CRH) and related peptides are known to play essential roles in the regulation of neuroendocrine, autonomic and behavioural responses to physical and emotional stress. In nonmammalian species, CRH-like peptides are hypothesized to play similar neuroendocrine and neurocrine roles. However, there is relatively little detailed information on the distribution of CRH neurones in the central nervous system (CNS) of nonmammalian vertebrates, and there are currently no comparative data on stress-induced changes in CRH neuronal physiology. We used a specific, affinity-purified antibody raised against synthetic Xenopus laevis CRH to map the distribution of CRH in the CNS of juvenile South African clawed frogs . We then analysed stress-induced changes in CRH immunoreactivity (CRH-ir) throughout the CNS. We found that CRH-positive cell bodies and fibres are widely distributed throughout the brain and rostral spinal cord of juvenile X. laevis . Strong CRH-immunoreactovity (ir) was found in cell bodies and fibres in the anterior preoptic area (POA, an area homologous to the mammalian paraventricular nucleus) and the external zone of the median eminence. Specific CRH-ir cell bodies and fibres were also identified in the septum, pallium and striatum in the telencephalon; the amygdala, bed nucleus of the stria terminalis and various hypothalamic and thalamic nuclei in the diencephalon; the tectum, torus semicircularis and tegmental nuclei of the mesencephalon; the cerebellum and locus coeruleus in the rhombencephalon; and the ventral horn of the rostral spinal cord. To determine if exposure to an acute physical stressor alters CRH neuronal physiology, we exposed juvenile frogs to shaking/handling and conducted morphometric analysis. Plasma corticosterone was significantly elevated by 30 min after exposure to the stressor and continued to increase up to 6 h. Morphometric analysis of CRH-ir after 4 h of stress showed a significant increase in CRH-ir in parvocellular neurones of the anterior preoptic area, the medial amygdala and the bed nucleus of the stria terminalis, but not in other brain regions. The stress-induced increase in CRH-ir in the POA was associated with increased Fos-like immunoreactivity (Fos-LI), and confocal microscopy showed that CRH-ir colocalized with Fos-LI in a subset of Fos-LI-positive neurones. Our results support the view that the basic pattern of CNS CRH expression arose early in vertebrate evolution and lend further support to earlier studies suggesting that amphibians may be a transitional species for descending CRH-ergic pathways. Furthermore, CRH neurones in the frog brain exhibit changes in response to a physical stressor that parallel those seen in mammals, and thus are likely to play an active role in mediating neuroendocrine, behavioural and autonomic stress responses.en_US
dc.format.extent1121171 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2004 Blackwell Publishing Ltden_US
dc.subject.otherCorticotrophin-releasing Hormoneen_US
dc.subject.otherStressen_US
dc.subject.otherXenopusen_US
dc.subject.otherAmphibianen_US
dc.subject.otherFosen_US
dc.titleDistribution and Acute Stressor-Induced Activation of Corticotrophin-Releasing Hormone Neurones in the Central Nervous System of Xenopus laevisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Neuroscience Program, The University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationother* Department of Molecular, Cellular and Developmental Biologyen_US
dc.identifier.pmid15584929en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73585/1/j.1365-2826.2004.01246.x.pdf
dc.identifier.doi10.1111/j.1365-2826.2004.01246.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceSpiess J, Rivier J, Rivier C, Vale W. Primary structure of corticotropin-releasing factor from ovine hypothalamus. Proc Natl Acad Sci USA 1981; 78: 6517 – 6521.en_US
dc.identifier.citedreferenceLovejoy DA, Balment RJ. Evolution and physiology of the corticotropin-releasing factor (CRF) family of neuropeptides in vertebrates. Gen Comp Endocrinol 1999; 115: 1 – 22.en_US
dc.identifier.citedreferenceDautzenberg FM, Hauger RL. The CRF peptide family and their receptors: yet more partners discovered. Trends Pharmacol Sci 2002; 23: 71 – 77.en_US
dc.identifier.citedreferenceStenzel-Poore MP, Heldwein KA, Stenzel P, Lee S, Vale WW. Characterization of the genomic corticotropin-releasing factor (CRF) gene from Xenopus laevis − 2 members of the CRF family exist in amphibians. Mol Endocrinol 1992; 6: 1716 – 1724.en_US
dc.identifier.citedreferenceVale W, Spiess J, Rivier C, Rivier J. Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science 1981; 213: 1394 – 1397.en_US
dc.identifier.citedreferenceThompson RC, Seasholtz AF, Herbert E. Rat corticotropin-releasing hormone gene − sequence and tissue-specific expression. Mol Endocrinol 1987; 1: 363 – 370.en_US
dc.identifier.citedreferenceSawchenko PE, Swanson LW. Organization of CRF immunoreactive cells and fibers in the rat brain: immunohistochemical studies. In: DeSouza, E, Nemeroff, C, eds. Corticotropin-Releasing Factor: Basic and Clinical Studies of a Neuropeptide. Boca Raton, FL: CRC, 1989.en_US
dc.identifier.citedreferenceOwens MJ, Nemeroff CB. Physiology and pharmacology of corticotropin-releasing factor. Pharmacol Rev 1991; 43: 425 – 473.en_US
dc.identifier.citedreferenceOlivereau M, Vandesande F, Boucique E, Ollevier F, Olivereau JM. Immunocytochemical localization and spatial relation to the adenohypophysis of a somatostatin-like and a corticotropin-releasing factor-like peptide in the brain of 4 amphibian species. Cell Tissue Res 1987; 247: 317 – 324.en_US
dc.identifier.citedreferenceFasolo A, Andreone C, Vandesande F. Immunohistochemical localization of corticotropin-releasing factor (CRF)-like immunoreactivity in the hypothalamus of the newt, Triturus cristatus. Neurosci Lett 1984; 49: 135 – 142.en_US
dc.identifier.citedreferenceGonzalez GC, Lederis K. Sauvagine-like and corticotropin-releasing factor-like immunoreactivity in the brain of the bullfrog ( Rana catesbeiana ). Cell Tissue Res 1988; 253: 29 – 37.en_US
dc.identifier.citedreferenceOgawa K, Suzuki E, Taniguchi K. Immunohistochemical studies on the development of the hypothalamohypophyseal system in Xenopus laevis. Anat Rec 1995; 241: 244 – 254.en_US
dc.identifier.citedreferenceTonon MC, Burlet A, Lauber M, Cuet P, JÉgou S, Gouteux L, Ling N, Vaudry H. Immunohistochemical localization and radioimmunoassay of corticotropin-releasing factor in the forebrain and hypophysis of the frog Rana ridibunda. Neuroendocrinology 1985; 40: 109 – 119.en_US
dc.identifier.citedreferenceCarr JA, Norris DO. Immunohistochemicallocalization of corticotropin-releasing factor-like and arginine vasotocin-like immunoreactivities in the brain and pituitary of the American bullfrog ( Rana catesbeiana ) during development and metamorphosis. Gen Comp Endocrinol 1990; 78: 180 – 188.en_US
dc.identifier.citedreferenceBhargava S, Rao PDP. Distribution of corticotropin-releasing factor Immunoreactive neurons in the brain of the tigerfrog, Rana tigrina. Neurosci Lett 1993; 154: 27 – 30.en_US
dc.identifier.citedreferenceHerman JP, Schafer MKH, Sladek CD, Day R, Young EA, Akil H, Watson SJ. Chronic electroconvulsive shock treatment elicits up-regulation of CRF and AVP messenger RNA in select populations of neuroendocrine neurons. Brain Res 1989; 501: 235 – 246.en_US
dc.identifier.citedreferenceBartanusz V, Jezova D, Bertini LT, Tilders FJH, Aubry JM, Kiss JZ. Stress-induced increase in vasopressin and corticotropin-releasing factor expression in hypophysiotrophic paraventricular neurons. Endocrinology 1993; 132: 895 – 902.en_US
dc.identifier.citedreferenceMa XM, Levy A, Lightman SL. Emergence of an isolated arginine vasopressin (AVP) response to stress after repeated restraint. A study of both AVP and corticotropin-releasing hormone messenger ribonucleic acid (RNA) and heteronuclear RNA. Endocrinology 1997; 138: 4351 – 4357.en_US
dc.identifier.citedreferenceImaki T, Nahan JL, Rivier C, Sawchenko PE, Vale W. Differential regulation of corticotropin-releasing factor messenger RNA in rat brain regions by glucocorticoids and stress. J Neurosci 1991; 11: 585 – 599.en_US
dc.identifier.citedreferenceImaki T, Wang X-Q, Shibasaki T, Harada S, Chikada N, Takahashi C, Naruse M, Demura H. Chlordiazepoxide attenuates stress-induced activation of neurons, corticotropin-releasing factor (CRF) gene transcription and CRF biosynthesis in the paraventricular nucleus (PVN). Mol Brain Res 1995; 32: 261 – 270.en_US
dc.identifier.citedreferenceKovacs KJ, Sawchenko PE. Regulation of stress-induced transcriptional changes in the hypothalamic neurosecretory neurons. J Mol Neurosci 1996; 7: 125 – 133.en_US
dc.identifier.citedreferenceImaki T, Naruse M, Harada S, Chikada N, Imaki J, Onodera H, Demura H, Vale W. Corticotropin-releasing factor up-regulates its own receptor mRNA in the paraventricular nucleus of the hypothalamus. Mol Brain Res 1996; 38: 166 – 170.en_US
dc.identifier.citedreferenceHsu DT, Chen FL, Takahashi LK, Kalin NH. Rapid stress-induced elevations in corticotropin-releasing hormone mRNA in rat central amygdala nucleus and hypothalamic paraventricular nucleus: An in situ hybridization analysis. Brain Res 1998; 788: 305 – 310.en_US
dc.identifier.citedreferenceLiu Y, Curtis JT, Fowler CD, Spencer C, Houpt T, Wang ZX. Differential expression of vasopressin, oxytocin and corticotrophin-releasing hormone messenger RNA in the paraventricular nucleus of the prairie vole brain following stress. J Neuroendocrinol 2001; 13: 1059 – 1065.en_US
dc.identifier.citedreferenceHand GA, Hewitt CB, Fulk LJ, Stock HS, Carson JA, Davis JM, Wilson MA. Differential release of corticotropin-releasing hormone (CRH) in the amygdala during different types of stressors. Brain Res 2002; 949: 122 – 130.en_US
dc.identifier.citedreferenceBruijnzeel AW, Stam R, Compaan JC, Wiegant VM. Stress-induced sensitization of CRH-ir but not P-CREB-ir responsivity in the rat central nervous system. Brain Res 2001; 908: 187 – 196.en_US
dc.identifier.citedreferenceKay-Nishiyama C, Watts AG. Dehydration modifies somal CRH immunoreactivity in the rat hypothalamus. an immunocytochemical study in the absence of colchicine. Brain Res 1999; 822: 251 – 255.en_US
dc.identifier.citedreferenceImaki T, Katsumata H, Miyata M, Naruse M, Imaki J, Minami S. Expression of corticotropin-releasing hormone type 1 receptor in paraventricular nucleus after acute stress. Neuroendocrinology 2001; 73: 293 – 301.en_US
dc.identifier.citedreferenceMakino S, Shibasaki T, Yamauchi N, Nishioka T, Mimoto T, Wakabayashi I, Gold PW, Hashimoto K. Psychological stress increased corticotropin-releasing hormone mRNA and content in the central nucleus of the amygdala but not in the hypothalamic paraventricular nucleus in the rat. Brain Res 1999; 850: 136 – 143.en_US
dc.identifier.citedreferenceVerhaert P, Marivoet S, Vandesande F, DeLoof A. Localization of CRF immunoreactivity in the central nervous system of 3 vertebrate and one insect species. Cell Tissue Res 1984; 238: 49 – 53.en_US
dc.identifier.citedreferenceDenver RJ. Environmental stress as a developmental cue: Corticotropin-releasing hormone is a proximate mediator of adaptive phenotypic plasticity in amphibian metamorphosis. Horm Behav 1997; 31: 169 – 179.en_US
dc.identifier.citedreferenceBoorse GC, Denver RJ. Expression and hypophysiotropic actions of corticotropin-releasing factor in Xenopus laevis. Gen Comp Endocrinol 2004; 137: 272 – 282.en_US
dc.identifier.citedreferenceUbink R, Jenks BG, Roubos EW. Physiologically induced Fos expression in the hypothalamo-hypophyseal system of Xenopus laevis. Neuroendocrinology 1997; 65: 413 – 422.en_US
dc.identifier.citedreferenceNegoescu A, Labat-Moleur F, Lorimier P, Lamarcq L, Guillermet C, Chambaz E, Brambilla E. F(ab) secondary antibodies: a general method for double immunolabeling with primary antisera from the same species − efficiency control by chemiluminescence. J Histochem Cytochem 1994; 42: 433 – 437.en_US
dc.identifier.citedreferenceGlennemeier KA, Denver RJ. Developmental changes in interrenal responsiveness in anuran amphibians. Integr Comp Biol 2002; 42: 565 – 573.en_US
dc.identifier.citedreferenceLicht P, McCreery BR, Barnes R, Pang R. Seasonal and stress related changes in plasma gonadotropins, sex steroids, and corticosterone in the bullfrog, Rana catesbeiana. Gen Comp Endocrinol 1983; 50: 124 – 145.en_US
dc.identifier.citedreferenceVerburg-van Kemenade BML, Jenks BG, Cruijsen PMJM, Dings A, Tonon M-C, Vaudry H. Regulation of MSH release from the neurointermediate lobe of Xenopus laevis by CRF-like peptides. Peptides 1987; 8: 1093 – 1100.en_US
dc.identifier.citedreferenceSilveira PF, Breno MC, Puorto G, del Rio MPM, Mancera JM. Corticotropin-releasing hormone-like immunoreactivity in the brain of the snake Bothrops jararaca. Histochem J 2001; 33: 685 – 694.en_US
dc.identifier.citedreferenceAvalos MDL, Mancera JM, Perezfigares JM, Fernandezllebrez P. Immunocytochemical localization of corticotropin-releasing factor in the brain of the turtle, Mauremys caspica. Anat Embryol 1993; 188: 163 – 171.en_US
dc.identifier.citedreferenceMancera JM, Avalos MDL, Perezfigares JM, Fernandezllebrez P. The distribution of corticotropin-releasing factor-immunoreactive neurons and nerve fibers in the brain of the snake, Natrix maura − coexistence with arginine vasotocin and mesotocin. Cell Tissue Res 1991; 264: 539 – 548.en_US
dc.identifier.citedreferenceRichard S, Martinez-Garcia F, Lanuza E, Davies DC. Distribution of corticotropin-releasing factor-immunoreactive neurons in the central nervous system of the domestic chicken and Japanese quail. J Comp Neurol 2004; 469: 559 – 580.en_US
dc.identifier.citedreferenceYamada S, Mikami S. Immunohistochemical localization of corticotropin-releasing factor (CRF)-containing neurons in the hypothalamus of the Japanese quail, Coturnix coturnix. Cell Tissue Res 1985; 239: 299 – 304.en_US
dc.identifier.citedreferenceMerchenthaler I, Vigh S, Petrusz P, Schally AV. Immunocytochemical localization of corticotropin-releasing factor (CRF) in the rat brain. Am J Anat 1982; 165: 385 – 396.en_US
dc.identifier.citedreferenceBons N, Bouille C, Tonon MC, Guillaume V. Topographical distribution of CRF immunoreactivity in the pigeon brain. Peptides 1988; 9: 697 – 707.en_US
dc.identifier.citedreferenceKozicz T, Arimura A, Maderdrut JL, Lazar G. Distribution of urocortin-like immunoreactivity in the central nervous system of the frog Rana esculenta. J Comp Neurol 2002; 453: 185 – 198.en_US
dc.identifier.citedreferenceMorin SM, Ling N, Liu XJ, Kahl SD, Gehlert DR. Differential distribution of urocortin- and corticotropin-releasing factor-like immunoreactivities in the rat brain. Neuroscience 1999; 92: 281 – 291.en_US
dc.identifier.citedreferenceSwanson LW, Sawchenko PE, Rivier J, Vale WW. Organization of ovine corticotropin-releasing factor immunoreactive cells and fibers in the rat brain − an immunohistochemical study. Neuroendocrinology 1983; 36: 165 – 186.en_US
dc.identifier.citedreferenceMerchenthaler I. Corticotropin releasing-factor (CRF)-like immunoreactivity in the rat central nervous system − extrahypothalamic distribution. Peptides 1984; 5: 53 – 69.en_US
dc.identifier.citedreferenceJozsa R, Vigh S, Schally AV, Mess B. Localization of corticotropin-releasing factor-containing neurons in the brain of the domestic fowl − an immunohistochemical study. Cell Tissue Res 1984; 236: 245 – 248.en_US
dc.identifier.citedreferenceShioda S, Nakai Y, Kitazawa S, Sunayama H. Immunocytochemical observations of corticotropin-releasing factor-containing neurons in the rat hypothalamus with special reference to neuronal communication. Acta Anat 1985; 124: 58 – 64.en_US
dc.identifier.citedreferenceZiegler DR, Herman JP. Neurocircuitry of stress integration: anatomical pathways regulating the hypothalamo-pituitary-adrenocortical axis of the rat. Integr Comp Biol 2002; 42: 541 – 551.en_US
dc.identifier.citedreferenceRoy BB. Brain mechanisms responsible for ACTH release in the toad B. Melanostictus with a note on C. versicolor. Bull Univ Coll Med Calcutta 1969/71; 7/8: 1 – 13.en_US
dc.identifier.citedreferenceNotenboom CD, Terlou M, Maten ML. Evidence for corticotropin releasing factor (CRF) synthesis in preoptic nucleus of Xenopus laevis tadpoles − preliminary report based on lesion experiments. Cell Tissue Res 1976; 169: 23 – 31.en_US
dc.identifier.citedreferenceSah P, Faber ESL, De Armentia ML, Power J. The amygdaloid complex: anatomy and physiology. Physiol Rev 2003; 83: 803 – 834.en_US
dc.identifier.citedreferenceMcDonald AJ. Cortical pathways to the mammalian amygdala. Prog Neurobiol 1998; 55: 257 – 332.en_US
dc.identifier.citedreferenceRosen JB, Davis M. Enhancement of acoustic startle by electrical-stimulation of the amygdala. Behav Neurosci 1988; 102: 195.en_US
dc.identifier.citedreferenceRosen JB, Davis M. Enhancement of electrically elicited startle by amygdaloid stimulation. Physiol Behav 1990; 48: 343 – 349.en_US
dc.identifier.citedreferenceGelsema AJ, Agarwal SK, Calaresu FR. Cardiovascular responses and changes in neural activity in the rostral ventrolateral medulla elicited by electrical stimulation of the amygdala of the rat. J Autonomic Nervous System 1989; 27: 91 – 100.en_US
dc.identifier.citedreferenceGray TS. Amygdala: Role in autonomic and neuroendocrine responses to stress. In: McCubbin, JA, Kaufman, PG, Nemeroff, CB, eds. Stress, Neuropeptides and Systemic Disease. New York, NY: Academic Press, 1991: 37 – 53.en_US
dc.identifier.citedreferenceKubo T, Okatani H, Nishigori Y, Hagiwara Y, Fukumori R, Goshima Y. Involvement of the medial amygdaloid nucleus in restraint stress-induced pressor responses in rats. Neurosci Lett 2004; 354: 84 – 86.en_US
dc.identifier.citedreferenceCullinan WE, Herman JP, Battaglia DF, Akil H, Watson SJ. Pattern and time-course of immediate–early gene expression in rat brain following acute stress. Neuroscience 1995; 64: 477 – 505.en_US
dc.identifier.citedreferenceHerman JP, Cullinan WE. Neurocircuitry of stress: Central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 1997; 20: 78 – 84.en_US
dc.identifier.citedreferenceSchulkin J, Gold PW, McEwen BS. Induction of corticotropin-releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 1998; 23: 219 – 243.en_US
dc.identifier.citedreferenceMarin O, Smeets WJAJ, Gonzalez A. Basal ganglia organization in amphibians: chemoarchitecture. J Compneurol 1998; 392: 285 – 312.en_US
dc.identifier.citedreferenceMason JW. A review of psychoendocrine research on sympathetic-adrenal medullary system. Psychosomatic Med 1968; 30: 631 – &.en_US
dc.identifier.citedreferenceMcCarty R. Stress, behavior and the sympathetic-adrenal medullary system. In: Pohorecky, LA, Brick, J, eds. Stress and Alcohol Use. New York, NY: Elsevier Science Publishers, 1983: 7.en_US
dc.identifier.citedreferenceDeutch AY, Goldstein M, Roth RH. Activation of the locus coeruleus induced by selective stimulation of the ventral tegmental area. Brain Res 1986; 363: 307 – 314.en_US
dc.identifier.citedreferenceRoth RH, Tam SY, Ida Y, Yang JX, Deutch AY. Stress and the mesocorticolimbic dopamine systems. Ann NY Acad Sci 1988; 537: 138 – 147.en_US
dc.identifier.citedreferenceDeutch AY, Clark WA, Roth RH. Prefrontal cortical dopamine depletion enhances the responsiveness of mesolimbic dopamine neurons to stress. Brain Res 1990; 521: 311 – 315.en_US
dc.identifier.citedreferenceCalogero AE, Gallucci WT, Gold PW, Chrousos GP. Multiple feedback regulatory loops upon rat hypothalamic corticotropin-releasing hormone secretion − potential clinical implications. J Clin Invest 1988; 82: 767 – 774.en_US
dc.identifier.citedreferenceDay TA, Ferguson AV, Renaud LP. Noradrenergic afferents facilitate the activity of tuberoinfundibular neurons of the hypothalamic paraventricular nucleus. Neuroendocrinology 1985; 41: 17 – 22.en_US
dc.identifier.citedreferenceKannan H, Kasai M, Osaka T, Yamashita H. Neurons in the paraventricular nucleus projecting to the median eminence − a study of their afferent connections from peripheral baroreceptors, and from the A1-catecholaminergic area in the ventrolateral medulla. Brain Res 1987; 409: 358 – 363.en_US
dc.identifier.citedreferenceTanaka J, Kaba H, Saito H, Seto K. Inputs from the A1 noradrenergic region to hypothalamic paraventricular neurons in the rat. Brain Res 1985; 335: 368 – 371.en_US
dc.identifier.citedreferencePlotsky PM. Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophyseal-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 1987; 121: 924 – 930.en_US
dc.identifier.citedreferenceDunn AJ, Berridge CW. Physiological and behavioral responses to corticotropin-releasing factor administration − is CRF a mediator of anxiety or stress responses? Brain Res Rev 1990; 15: 71 – 100.en_US
dc.identifier.citedreferenceBoorse GC, Denver RJ. Endocrine mechanisms underlying plasticity in metamorphic timing in spadefoot toads. Integr Comp Biol 2003; 43: 646 – 657.en_US
dc.identifier.citedreferenceCeccatelli S, Villar MJ, Goldstein M, Hokfelt T. Expression of c-Fos immunoreactivity in transmitter-characterized neurons after stress. Proc Natl Acad Sci USA 1989; 86: 9569 – 9573.en_US
dc.identifier.citedreferenceEmmert MH, Herman JP. Differential forebrain c-fos mRNA induction by ether inhalation and novelty: evidence for distinctive stress pathways. Brain Res 1999; 845: 60 – 67.en_US
dc.identifier.citedreferenceDay HEW, Akil H. Differential pattern of c-fos mRNA rat brain following central and systemic administration of interleukin-1-beta: implications for mechanism of action. Neuroendocrinology 1996; 63: 207 – 218.en_US
dc.identifier.citedreferenceSawchenko PE, Brown ER, Chan RKW, Ericsson A, Li HY, Roland BL, Kovacs KJ. The paraventricular nucleus of the hypothalamus and the functional neuroanatomy of visceromotor responses to stress. Prog Brain Res 1996; 107: 201 – 222.en_US
dc.identifier.citedreferenceImaki T, Shibasaki T, Hotta M, Demura H. Intracerebroventricular administration of corticotropin-releasing factor induces c-fos mRNA expression in brain regions related to stress responses − comparison with pattern of c-fos mRNA induction after stress. Brain Res 1993; 616: 114 – 125.en_US
dc.identifier.citedreferenceImaki T, Shibasaki T, Hotta M, Demura H. Early Induction of c-fos precedes increased expression of corticotropin-releasing factor messenger ribonucleic acid in the paraventricular nucleus after immobilization stress. Endocrinology 1992; 131: 240 – 246.en_US
dc.identifier.citedreferenceWatts AG, Sanchez-Watts G. Interactions between heterotypic stressors and corticosterone reveal integrative mechanisms for controlling corticotropin-releasing hormone gene expression in the rat paraventricular nucleus. J Neurosci 2002; 22: 6282 – 6289.en_US
dc.identifier.citedreferenceYao M, Westphal N, Denver RJ. Acute stress-induced elevation in corticotropin-releasing hormone expression in Xenopus laevis. Integr Comp Biol 2002; 42: 1341 – 1341.en_US
dc.identifier.citedreferenceTimofeeva E, Huang QL, Richard D. Effects of treadmill running on brain activation and the corticotropin-releasing hormone system. Neuroendocrinology 2003; 77: 388 – 405.en_US
dc.identifier.citedreferenceTuinhof R, Ubink R, Tanaka S, Atzori C, van Strien FJC, Roubos EW. Distribution of pro-opiomelanocortin and its peptide end products in the brain and hypophysis of the aquatic toad, Xenopus laevis. Cell Tissue Res 1998; 292: 251 – 265.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.