Show simple item record

Integrated Microfluidic Platform for Oral Diagnostics

dc.contributor.authorHerr, Amy E.en_US
dc.contributor.authorHatch, Anson V.en_US
dc.contributor.authorGiannobile, William V.en_US
dc.contributor.authorThrockmorton, Daniel J.en_US
dc.contributor.authorTran, Huu M.en_US
dc.contributor.authorBrennan, James S.en_US
dc.contributor.authorSingh, Anup K.en_US
dc.date.accessioned2010-06-01T20:28:55Z
dc.date.available2010-06-01T20:28:55Z
dc.date.issued2007-03en_US
dc.identifier.citationHERR, AMY E.; HATCH, ANSON V.; GIANNOBILE, WILLIAM V.; THROCKMORTON, DANIEL J.; TRAN, HUU M.; BRENNAN, JAMES S.; SINGH, ANUP K. (2007). "Integrated Microfluidic Platform for Oral Diagnostics." Annals of the New York Academy of Sciences 1098(1 Oral-Based Diagnostics ): 362-374. <http://hdl.handle.net/2027.42/73594>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73594
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17435142&dopt=citationen_US
dc.description.abstractWhile many point-of-care (POC) diagnostic methods have been developed for blood-borne analytes, development of saliva-based POC diagnostics is in its infancy. We have developed a portable microfluidic device for detection of potential biomarkers of periodontal disease in saliva. The device performs rapid microfluidic chip-based immunoassays (<3–10 min) with low sample volume requirements (10 ΜL) and appreciable sensitivity (nM–pM). Our microfluidic method facilitates hands-free saliva analysis by integrating sample pretreatment (filtering, enrichment, mixing) with electrophoretic immunoassays to quickly measure analyte concentrations in minimally pretreated saliva samples. The microfluidic chip has been integrated with miniaturized electronics, optical elements, such as diode lasers, fluid-handling components, and data acquisition software to develop a portable, self-contained device. The device and methods are being tested by detecting potential biomarkers in saliva samples from patients diagnosed with periodontal disease. Our microchip-based analysis can readily be extended to detection of biomarkers of other diseases, both oral and systemic, in saliva and other oral fluids.en_US
dc.format.extent172995 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2007 New York Academy of Sciencesen_US
dc.subject.otherMicrofluidicsen_US
dc.subject.otherPeriodontal Diseaseen_US
dc.subject.otherDiagnosticsen_US
dc.subject.otherPoint-of-Careen_US
dc.subject.otherPOCen_US
dc.subject.otherImmunoassayen_US
dc.subject.otherLab-on-A-chipen_US
dc.subject.otherSalivaen_US
dc.titleIntegrated Microfluidic Platform for Oral Diagnosticsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Dentistry, University of Michigan, Ann Arbor, Michigan 84106, USAen_US
dc.contributor.affiliationotherBiosystems Research Department, Sandia National Laboratories, Livermore, California 94550, USAen_US
dc.identifier.pmid17435142en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73594/1/annals.1384.004.pdf
dc.identifier.doi10.1196/annals.1384.004en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceStreckfus, C.F. & L.R. Bigler. 2002. Saliva as a diagnostic fluid. Oral Dis. 8: 69 – 76.en_US
dc.identifier.citedreferenceFerguson, D.B. 1987. Current diagnostic uses of saliva. J. Dent. Res. 66: 420 – 424.en_US
dc.identifier.citedreferenceMandel, I.D. 1990. The diagnostic uses of saliva. J. Oral Path. 19: 119 – 125.en_US
dc.identifier.citedreferenceMalamud, D. 1992. Saliva as a diagnostic fluid. Br. Med. J. 305: 207 – 208.en_US
dc.identifier.citedreference5.  HHS. 2000. Oral health in America. A report of the Surgeon General. U.S. Department of Health and Human Services, National Institute of Dental and Craniofacial Research, National Institutes of Health. Rockville, MD.en_US
dc.identifier.citedreference6.  NIDCR. 1999. Workshop on Development of New Technologies for Saliva and Other Oral Fluid-Based Diagnostics. Airlie House Conference Center, Virginia, September 12 – 14, 1999.en_US
dc.identifier.citedreferenceWeston, A.D. & L. Hood. 2004. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3: 179.en_US
dc.identifier.citedreferenceAnderson, N.L. & N.G. Anderson. 2002. The human plasma proteome—History, character, and diagnostic prospects. Mol. Cell Proteomics 1: 845 – 867.en_US
dc.identifier.citedreferenceRenzi, R.F. et al. 2005. Hand-held microanalytical instrument for chip-based electrophoretic separations of proteins. Anal. Chem. 77: 435 – 441.en_US
dc.identifier.citedreferenceSia, S.K. et al. 2004. An integrated approach to a portable and low-cost immunoassay for resource-poor settings. Angewandte Chemie Int. Ed. 43: 498.en_US
dc.identifier.citedreferenceSrinivasan, V., V.K. Pamula & R.B. Fair. 2004. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab Chip. 4: 310.en_US
dc.identifier.citedreferenceHatch, A. et al. 2001. A rapid diffusion immunoassay in a T-sensor. Nat. Biotechnol. 19: 461 – 465.en_US
dc.identifier.citedreferenceYang, C.Y. et al. 2005. Detection of picomolar levels of interleukin-8 in human saliva by SPR. Lab Chip. 5: 1017.en_US
dc.identifier.citedreferenceChristodoulides, N. et al. 2005. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip. 5: 261 – 269.en_US
dc.identifier.citedreferenceBailey, C.G. et al. 2000. Chip-based, multiple-channel, total-analysis system. Abstr. Papers Am. Chem. Soc. 219: U85.en_US
dc.identifier.citedreferenceFruetel, J.A. et al. 2005. Microchip separations of protein biotoxins using an integrated hand-held device. Electrophoresis 26: 1144.en_US
dc.identifier.citedreferenceHerr, A.E. & A.K. Singh. 2004. Photopolymerized cross-linked polyacrylamide gels for on-chip protein sizing. Anal. Chem. 76: 4727 – 4733.en_US
dc.identifier.citedreferenceReichmuth, D.S., T.J. Shepodd & B.J. Kirby. 2005. Microchip HPLC of peptides and proteins. Anal. Chem. 77: 2997.en_US
dc.identifier.citedreferenceThrockmorton, D.J., T.J. Shepodd & A.K. Singh. 2002. Electrochromatography in microchips: reversed-phase separation of peptides and amino acids using photopatterned rigid polymer monoliths. Anal. Chem. 74: 784 – 789.en_US
dc.identifier.citedreferenceCummings, E.B. & A.K. Singh. 2003. Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results. Anal. Chem. 75: 4724.en_US
dc.identifier.citedreferenceBarrett, L.M. et al. 2005. Dielectrophoretic manipulation of particles and cells using insulating ridges in faceted prism microchannels. Anal. Chem. 77: 6798 – 6804.en_US
dc.identifier.citedreferenceHerr, A.E., A.A. Davenport & A.K. Singh. 2005. Microchip immunoassays using photodefined polyacrylamide for rapid native gel electrophoresis of immune complexes. Anal. Chem. 77: 585 – 590.en_US
dc.identifier.citedreferenceHjerten, S. et al. 1993. Reversed-phase chromatography of proteins and peptides on compressed continuous beds. Chromatographia 37: 287.en_US
dc.identifier.citedreferenceHjerten, S. & M.D. Zhu. 1985. Adaptation of the equipment for high-performance electrophoresis to isoelectric-focusing. J. Chromatogr. 346: 265 – 270.en_US
dc.identifier.citedreferenceHerr, A.E. & A.K. Singh. 2004. Photopolymerized cross-linked polyacrylamide gels for on-chip protein sizing. Anal. Chem. 76: 4727 – 4733.en_US
dc.identifier.citedreferenceHan, J. & A.K. Singh. 2004. Rapid protein separations in ultra-short microchannels: microchip sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing. J. Chromatogr. A. 1049: 205.en_US
dc.identifier.citedreferenceSchmalzing, D. & W. Nashabeh. 1997. Capillary electrophoresis based immunoassays: a critical review. Electrophoresis 2184 – 2193.en_US
dc.identifier.citedreferenceShimura, K. & B.L. Karger. 1994. Affinity probe capillary electrophoresis: analysis of recombinant human growth-hormone with a fluorescent-labeled antibody fragment. Anal. Chem. 66: 9 – 15.en_US
dc.identifier.citedreferenceSchultz, N.M. & R.T. Kennedy. 1993. Rapid immunoassays using capillary electrophoresis with fluorescence detection. Anal. Chem. 1: 3161 – 3165.en_US
dc.identifier.citedreferenceCheng, S.B. et al. 2001. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay. Anal. Chem. 73: 1472 – 1479.en_US
dc.identifier.citedreferenceWang, Y.C. et al. 2001. Enhancement of the sensitivity of a capillary electrophoresis immunoassay for estradiol with laser-induced fluorescence based on a fluorescein-labeled secondary antibody. Anal. Chem. 15: 5616 – 5619.en_US
dc.identifier.citedreferenceHatch, A.V. et al. 2006. Integrated preconcentration-sizing of proteins in microchips using photopatterned polyacrylamide gels. Anal. Chem. 78: 4976 – 4984.en_US
dc.identifier.citedreferenceKaufman, E. & I.B. Lamster. 2000. Analysis of saliva for periodontal diagnosis—A review. J. Clin. Periodontol. 27: 453 – 465.en_US
dc.identifier.citedreferenceCooke, J.A. et al. 2006. Effect of rhPDGF-BB delivery on mediators of periodontal wound repair. Tissue Eng. 12: 1441 – 1450.en_US
dc.identifier.citedreferenceSarment, D.P. et al. 2006. Effects of rhPDGF-BB on bone marrow turnover during periodontal repair. J. Clin. Periodontol. 33: 135 – 140.en_US
dc.identifier.citedreferenceGapski, R. et al. 2004. Effect of systemic matrix metalloproteinase inhibition on periodontal wound repair: a proof of concept trial. J. Periodontol. 75: 441 – 452.en_US
dc.identifier.citedreferenceHerr, A.E. et al. 2007. Microfluidic immunoassays as rapid saliva-based clinical diagnostics. Under review.en_US
dc.identifier.citedreferenceOzmeric, N. 2004. Advances in periodontal disease markers. Clin. Chim. Acta 343: 1 – 16.en_US
dc.identifier.citedreferenceSong, S. et al. 2004. Microchip dialysis of proteins using in situ photopatterned nanoporous polymer membranes. Anal. Chem. 76: 2367 – 2373.en_US
dc.identifier.citedreferenceSong, S., A.K. Singh & B.J. Kirby. 2004. Electrophoretic concentration of proteins at laser-patterned nanoporous membranes in microchips. Anal. Chem. 76: 4589.en_US
dc.identifier.citedreferenceKirby, B.J. et al. 2005. Microfluidic routing of aqueous and organic flows at high pressures: fabrication and characterization of integrated polymer microvalve elements. Lab Chip. 5: 184.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.