Show simple item record

Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats

dc.contributor.authorMaren, Stephenen_US
dc.contributor.authorFerrario, Carrie R.en_US
dc.contributor.authorCorcoran, Kevin A.en_US
dc.contributor.authorDesmond, Timothy J.en_US
dc.contributor.authorFrey, Kirk A.en_US
dc.date.accessioned2010-06-01T20:30:10Z
dc.date.available2010-06-01T20:30:10Z
dc.date.issued2003-12en_US
dc.identifier.citationMaren, Stephen; Ferrario, Carrie R.; Corcoran, Kevin A.; Desmond, Timothy J.; Frey, Kirk A. (2003). "Protein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in rats." European Journal of Neuroscience 18(11): 3080-3088. <http://hdl.handle.net/2027.42/73614>en_US
dc.identifier.issn0953-816Xen_US
dc.identifier.issn1460-9568en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73614
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=14656303&dopt=citationen_US
dc.description.abstractThe amygdala is an essential neural substrate for Pavlovian fear conditioning. Nevertheless, long-term synaptic plasticity in amygdaloid afferents, such as the auditory thalamus, may contribute to the formation of fear memories. We therefore compared the influence of protein synthesis inhibition in the amygdala and the auditory thalamus on the consolidation of Pavlovian fear conditioning in Long–Evans rats. Rats received three tone-footshock trials in a novel conditioning chamber. Immediately after fear conditioning, rats were infused intra-cranially with the protein synthesis inhibitor, anisomycin. Conditional fear to the tone and conditioning context was assessed by measuring freezing behaviour in separate retention tests conducted at least 24 h following conditioning. Post-training infusion of anisomycin into the amygdala impaired conditional freezing to both the auditory and contextual stimuli associated with footshock. In contrast, intra-thalamic infusions of anisomycin or a broad-spectrum protein kinase inhibitor [1-(5′-isoquinolinesulphonyl)-2-methylpiperazine, H7] did not affect conditional freezing during the retention tests. Pre-training intra-thalamic infusion of the NMDA receptor antagonist 2-amino-5-phosphonopentanoic acid (APV), which blocks synaptic transmission in the auditory thalamus, produced a selective deficit in the acquisition of auditory fear conditioning. Autoradiographic assays of cerebral [ 14 C]-leucine incorporation revealed similar levels of protein synthesis inhibition in the amygdala and thalamus following intra-cranial anisomycin infusions. These results reveal that the establishment of long-term fear memories requires protein synthesis in the amygdala, but not the thalamus, after auditory fear conditioning. Forms of synaptic plasticity that depend on protein synthesis, such as long-term potentiation, are likely candidates for the encoding and long-term storage of fear memories in the amygdala.en_US
dc.format.extent304971 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights© Federation of European Neuroscience Societiesen_US
dc.subject.otherNMDA Receptoren_US
dc.subject.otherProtein Kinaseen_US
dc.subject.otherAnisomycinen_US
dc.subject.otherMedial Geniculate Bodyen_US
dc.subject.otherMemoryen_US
dc.subject.otherFreezingen_US
dc.titleProtein synthesis in the amygdala, but not the auditory thalamus, is required for consolidation of Pavlovian fear conditioning in ratsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychology, University of Michigan, 525 E. University Avenue, Ann Arbor, MI 48109–1109en_US
dc.contributor.affiliationumDepartments of Radiology and Neurology, University of Michigan, Ann Arbor, MI 48109–0720en_US
dc.contributor.affiliationumNeuroscience Program, University of Michigan, Ann Arbor, MI 48109–0520en_US
dc.identifier.pmid14656303en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73614/1/j.1460-9568.2003.03063.x.pdf
dc.identifier.doi10.1111/j.1460-9568.2003.03063.xen_US
dc.identifier.sourceEuropean Journal of Neuroscienceen_US
dc.identifier.citedreferenceBailey, D. J., Kim, J. J., Sun, W., Thompson, R. F. & Helmstetter, F. J. ( 1999 ) Acquisition of fear conditioning in rats requires the synthesis of mRNA in the amygdala. Behav. Neurosci., 113, 276 – 282.en_US
dc.identifier.citedreferenceBauer, E. P., LeDoux, J. E. & Nader, K. ( 2001 ) Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neurosci., 4, 687 – 688.en_US
dc.identifier.citedreferenceBauer, E. P., Schafe, G. E. & LeDoux, J. E. ( 2002 ) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J. Neurosci., 22, 5239 – 5249.en_US
dc.identifier.citedreferenceBlair, H. T., Schafe, G. E., Bauer, E. P., Rodrigues, S. M. & LeDoux, J. E. ( 2001 ) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn. Mem., 8, 229 – 242.en_US
dc.identifier.citedreferenceBourtchouladze, R., Abel, T., Berman, N., Gordon, R., Lapidus, K. & Kandel, E. R. ( 1998 ) Different training procedures recruit either one or two critical periods for contextual memory consolidation, each of which requires protein synthesis and PKA. Learn. Mem., 5, 365 – 374.en_US
dc.identifier.citedreferenceBrambilla, R., Gnesutta, N., Minichiello, L., White, G., Roylance, A. J., Herron, C. E., Ramsey, M., Wolfer, D. P., Cestari, V., Rossi-Arnaud, C., Grant, S. G., Chapman, P. F., Lipp, H. P., Sturani, E. & Klein, R. ( 1997 ) A role for the Ras signalling pathway in synaptic transmission and long-term memory. Nature, 390, 281 – 286.en_US
dc.identifier.citedreferenceBrunzell, D. H. & Kim, J. J. ( 2001 ) Fear conditioning to tone, but not to context, is attenuated by lesions of the insular cortex and posterior extension of the intralaminar complex in rats. Behav. Neurosci., 115, 365 – 375.en_US
dc.identifier.citedreferenceCampeau, S. & Davis, M. ( 1995 ) Involvement of subcortical and cortical afferents to the lateral nucleus of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned stimuli. J. Neurosci., 15, 2312 – 2327.en_US
dc.identifier.citedreferenceDavis, M. ( 2000 ) The role of the amygdala in conditioned and unconditioned fear and anxiety. In Aggleton, J. P., (Ed), The Amygdala: a Functional Analysis. Oxford University Press, New York, pp. 213 – 287.en_US
dc.identifier.citedreferenceEdeline, J. M., Pham, P. & Weinberger, N. M. ( 1993 ) Rapid development of learning-induced receptive field plasticity in the auditory cortex. Behav. Neurosci., 107, 539 – 551.en_US
dc.identifier.citedreferenceEdeline, J. M. & Weinberger, N. M. ( 1991 ) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav. Neurosci., 105, 154 – 175.en_US
dc.identifier.citedreferenceEdeline, J. M. & Weinberger, N. M. ( 1992 ) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav. Neurosci., 106, 81 – 105.en_US
dc.identifier.citedreferenceEichenbaum, H., Butter, C. M. & Agranoff, B. W. ( 1973 ) Radioautographic localization of inhibition of protein synthesis in specific regions of monkey brain. Brain Res., 61, 438 – 441.en_US
dc.identifier.citedreferenceFanselow, M. S. & LeDoux, J. E. ( 1999 ) Why we think plasticity underlying Pavlovian fear conditioning occurs in the basolateral amygdala. Neuron, 23, 229 – 232.en_US
dc.identifier.citedreferenceFendt, M. & Fanselow, M. S. ( 1999 ) The neuroanatomical and neurochemical basis of conditioned fear. Neurosci. Biobehav. Rev., 23, 743 – 760.en_US
dc.identifier.citedreferenceFlexner, L. B. & Goodman, R. H. ( 1975 ) Studies on memory: inhibitors of protein synthesis also inhibit catecholamine synthesis. Proc. Natl Acad. Sci. (USA), 72, 4660 – 4663.en_US
dc.identifier.citedreferenceGabriel, M., Saltwick, S. E. & Miller, J. D. ( 1975 ) Conditioning and reversal of short-latency multiple-unit responses in the rabbit medial geniculate nucleus. Science, 189, 1108 – 1109.en_US
dc.identifier.citedreferenceGerren, R. A. & Weinberger, N. M. ( 1983 ) Long-term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res., 265, 138 – 142.en_US
dc.identifier.citedreferenceGoosens, K. A., Holt, W. & Maren, S. ( 2000 ) A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats. Behav. Brain Res., 114, 145 – 152.en_US
dc.identifier.citedreferenceGoosens, K. A. & Maren, S. ( 2001 ) Contextual and auditory fear conditioning are mediated by the lateral, basal, and central amygdaloid nuclei in rats. Learn. Mem., 8, 148 – 155.en_US
dc.identifier.citedreferenceGoosens, K. A. & Maren, S. ( 2002 ) Long-term potentiation as a substrate for memory: Evidence from studies of amygdaloid plasticity and Pavlovian fear conditioning. Hippocampus, 12, 592 – 599.en_US
dc.identifier.citedreferenceHuang, Y. Y. & Kandel, E. R. ( 1998 ) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron, 21, 169 – 178.en_US
dc.identifier.citedreferenceHuang, Y. Y., Martin, K. C. & Kandel, E. R. ( 2000 ) Both protein kinase a and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J. Neurosci., 20, 6317 – 6325.en_US
dc.identifier.citedreferenceImpey, S., Smith, D. M., Obrietan, K., Donahue, R., Wade, C. & Storm, D. R. ( 1998 ) Stimulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nature Neurosci., 1, 595 – 601.en_US
dc.identifier.citedreferenceJarrell, T. W., Romanski, L. M., Gentile, C. G., McCabe, P. M. & Schneiderman, N. ( 1986 ) Ibotenic acid lesions in the medial geniculate region prevent the acquisition of differential Pavlovian conditioning of bradycardia to acoustic stimuli in rabbits. Brain Res., 382, 199 – 203.en_US
dc.identifier.citedreferenceJosselyn, S. A., Shi, C. J., Carlezon, W. A., Neve, R. L., Nestler, E. J. & Davis, M. ( 2001 ) Long-term memory is facilitated by cAMP response element-binding protein overexpression in the amygdala. J. Neurosci., 21, 2404 – 2412.en_US
dc.identifier.citedreferenceKesner, R. P., Partlow, L. M., Bush, L. G. & Berman, R. F. ( 1981 ) A quantitative regional analysis of protein synthesis inhibition in the rat brain following localized injection of cycloheximide. Brain Res., 209, 159 – 176.en_US
dc.identifier.citedreferenceKraus, M., Grimm, R., Schicknick, H., Wetzel, W., Staak, S., Scheich, H. & Tischmeyer, W. ( 1999 ) Protein synthesis in the gerbil auditory cortex is required for the formation of memory for frequency modulations. J. Neurochem., 73, S42 – S42.en_US
dc.identifier.citedreferenceKraus, M., Schicknick, H., Grimm, R., Wetzel, W., Staak, S., Scheich, H. & Tischmeyer, W. ( 2000 ) Auditory memory formation in the gerbil is sensitive to protein synthesis inhibitors applied to the auditory cortex. Eur. J. Neurosci., 12, 203 – 203.en_US
dc.identifier.citedreferenceKraus, M., Schicknick, H., Wetzel, W., Ohl, F., Staak, S. & Tischmeyer, W. ( 2002 ) Memory consolidation for the discrimination of frequency-modulated tones in Mongolian gerbils is sensitive to protein-synthesis inhibitors applied to the auditory cortex. Learn. Mem., 9, 293 – 303.en_US
dc.identifier.citedreferenceLeDoux, J. E. ( 2000 ) Emotion circuits in the brain. Annu. Rev. Neurosci., 23, 155 – 184.en_US
dc.identifier.citedreferenceLeDoux, J. E., Iwata, J., Pearl, D. & Reis, D. J. ( 1986 ) Disruption of auditory but not visual learning by destruction of intrinsic neurons in the rat medial geniculate body. Brain Res., 371, 395 – 399.en_US
dc.identifier.citedreferenceLee, H. & Kim, J. J. ( 1998 ) Amygdala NMDA receptors are critical for new fear learning in previously fear-conditioned rats. J. Neurosci., 18, 8444 – 8454.en_US
dc.identifier.citedreferenceLin, C. H., Yeh, S. H., Lin, C. H., Lu, K. T., Leu, T. H., Chang, W. C. & Gean, P. W. ( 2001 ) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron, 31, 841 – 851.en_US
dc.identifier.citedreferenceMaren, S. ( 1998 ) Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J. Neurosci., 18, 3088 – 3097.en_US
dc.identifier.citedreferenceMaren, S. ( 1999a ) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. TINS, 22, 561 – 567.en_US
dc.identifier.citedreferenceMaren, S. ( 1999b ) Neurotoxic basolateral amygdala lesions impair learning and memory but not the performance of conditional fear in rats. J. Neurosci., 19, 8696 – 8703.en_US
dc.identifier.citedreferenceMaren, S. ( 2001 ) Neurobiology of Pavlovian fear conditioning. Annu. Rev. Neurosci., 24, 897 – 931.en_US
dc.identifier.citedreferenceMaren, S., Aharonov, G. & Fanselow, M. S. ( 1996a ) Retrograde abolition of conditional fear after excitotoxic lesions in the basolateral amygdala of rats: absence of a temporal gradient. Behav. Neurosci., 110, 718 – 726.en_US
dc.identifier.citedreferenceMaren, S., Aharonov, G., Stote, D. L. & Fanselow, M. S. ( 1996b ) N -methyl-d-aspartate receptors in the basolateral amygdala are required for both acquisition and expression of conditional fear in rats. Behav. Neurosci., 110, 1365 – 1374.en_US
dc.identifier.citedreferenceMaren, S. & Fanselow, M. S. ( 1995 ) Synaptic plasticity in the basolateral amygdala induced by hippocampal formation stimulation in vivo. J. Neurosci., 15, 7548 – 7564.en_US
dc.identifier.citedreferenceMaren, S. & Fanselow, M. S. ( 1996 ) The amygdala and fear conditioning: Has the nut been cracked? Neuron, 16, 237 – 240.en_US
dc.identifier.citedreferenceMaren, S., Yap, S. A. & Goosens, K. A. ( 2001 ) The amygdala is essential for the development of neuronal plasticity in the medial geniculate nucleus during auditory fear conditioning in rats. J. Neurosci., 21, RC135.en_US
dc.identifier.citedreferenceMcEchron, M. D., Green, E. J., Winters, R. W., Nolen, T. G., Schneiderman, N. & McCabe, P. M. ( 1996 ) Changes of synaptic efficacy in the medial geniculate nucleus as a result of auditory classical conditioning. J. Neurosci., 16, 1273 – 1283.en_US
dc.identifier.citedreferenceMcKernan, M. G. & Shinnick-Gallagher, P. ( 1997 ) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature (Lond. ), 390, 607 – 611.en_US
dc.identifier.citedreferenceMiserendino, M. J., Sananes, C. B., Melia, K. R. & Davis, M. ( 1990 ) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature (Lond. ), 345, 716 – 718.en_US
dc.identifier.citedreferenceNader, K., Schafe, G. E. & LeDoux, J. E. ( 2000 ) Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature (Lond. ), 406, 722 – 726.en_US
dc.identifier.citedreferencePoremba, A. & Gabriel, M. ( 1997 ) Medial geniculate lesions block amygdalar and cingulothalamic learning-related neuronal activity. J. Neurosci., 17, 8645 – 8655.en_US
dc.identifier.citedreferencePoremba, A. & Gabriel, M. ( 2001 ) Amygdalar efferents initiate auditory thalamic discriminative training-induced neuronal activity. J. Neurosci., 21, 270 – 278.en_US
dc.identifier.citedreferenceRodrigues, S. M., Schafe, G. E. & LeDoux, J. E. ( 2001 ) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J. Neurosci., 21, 6889 – 6896.en_US
dc.identifier.citedreferenceRogan, M. T., Staubli, U. V. & LeDoux, J. E. ( 1997 ) Fear conditioning induces associative long-term potentiation in the amygdala. Nature (Lond. ), 390, 604 – 607.en_US
dc.identifier.citedreferenceSchafe, G. E., Atkins, C. M., Swank, M. W., Bauer, E. P., Sweatt, J. D. & LeDoux, J. E. ( 2000 ) Activation of ERK/MAP kinase in the amygdala is required for memory consolidation of Pavlovian fear conditioning. J. Neurosci., 20, 8177 – 8187.en_US
dc.identifier.citedreferenceSchafe, G. E. & LeDoux, J. E. ( 2000 ) Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J. Neurosci., 20, RC96.en_US
dc.identifier.citedreferenceSchafe, G. E., Nader, K., Blair, H. T. & LeDoux, J. E. ( 2001 ) Memory consolidation of Pavlovian fear conditioning: a cellular and molecular perspective. TINS, 24, 540 – 546.en_US
dc.identifier.citedreferenceScharf, M. T., Woo, N. H., Lattal, K. M., Young, J. Z., Nguyen, P. V. & Abel, T. ( 2002 ) Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. J. Neurophysiol., 87, 2770 – 2777.en_US
dc.identifier.citedreferenceShoute, A. M., Choi, J. S., LeDoux, J. E. & Schafe, G. E. ( 2002 ) The auditory thalamus contributes to memory formation of auditory fear conditioning via the ERK/MAP kinase signaling pathway. Soc. Neurosci. Abstract., 85. 9.en_US
dc.identifier.citedreferenceSmith, C. B., Crane, A. M., Kadekaro, M., Agranoff, B. W. & Sokoloff, L. ( 1984 ) Stimulation of protein synthesis and glucose utilization in the hypoglossal nucleus induced by axotomy. J. Neurosci., 10, 2489 – 2496.en_US
dc.identifier.citedreferenceSupple, W. Jr & Kapp, B. S. ( 1989 ) Response characteristics of neurons in the medial component of the medial geniculate nucleus during Pavlovian differential fear conditioning in rabbits. Behav. Neurosci., 103, 1276 – 1286.en_US
dc.identifier.citedreferenceSwanson, L. W. ( 1998 ) Brain Maps: Structure of the Rat Brain. Elsevier, Amsterdam.en_US
dc.identifier.citedreferenceWebber, T. J., Green, E. J., Winters, R. W., Schneiderman, N. & McCabe, P. M. ( 1999 ) Contribution of NMDA and non-NMDA receptors to synaptic transmission from the brachium of the inferior colliculus to the medial subdivision of the medial geniculate nucleus in the rabbit. Exp. Brain. Res., 124, 295 – 303.en_US
dc.identifier.citedreferenceWei, F., Qiu, C. S., Liauw, J., Robinson, D. A., Ho, N., Chatila, T. & Zhuo, M. ( 2002 ) Calcium-calmodulin-dependent protein kinase IV is required for fear memory. Nature Neurosci., 5, 573 – 579.en_US
dc.identifier.citedreferenceWeinberger, N. M. ( 1998 ) Physiological memory in primary auditory cortex: characteristics and mechanisms. Neurobiol. Learn. Mem., 70, 226 – 251.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.