Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis
dc.contributor.author | Ragsdale, Stephen W. | en_US |
dc.date.accessioned | 2010-06-01T20:36:03Z | |
dc.date.available | 2010-06-01T20:36:03Z | |
dc.date.issued | 2008-03 | en_US |
dc.identifier.citation | Ragsdale , Stephen W. (2008). " Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis ." Annals of the New York Academy of Sciences 1125(1 Incredible Anaerobes From Physiology to Genomics to Fuels ): 129-136. <http://hdl.handle.net/2027.42/73708> | en_US |
dc.identifier.issn | 0077-8923 | en_US |
dc.identifier.issn | 1749-6632 | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/73708 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18378591&dopt=citation | en_US |
dc.format.extent | 202185 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Inc | en_US |
dc.rights | 2008 New York Academy of Sciences | en_US |
dc.subject.other | Acetogenic Bacteria | en_US |
dc.subject.other | Carbon Dioxide Fixation | en_US |
dc.subject.other | Carbon Monoxide | en_US |
dc.subject.other | Cobalamin | en_US |
dc.title | Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Science (General) | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA | en_US |
dc.identifier.pmid | 18378591 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/73708/1/annals.1419.015.pdf | |
dc.identifier.doi | 10.1196/annals.1419.015 | en_US |
dc.identifier.source | Annals of the New York Academy of Sciences | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 2006. Metalloenzymes in the reduction of one-carbon compounds. In Biological Inorganic Chemistry: Structure and Reactivity. Bertini, I., et al., Eds.: 452 – 467. University Science Books. Mill Valley, CA. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 2004. Life with carbon monoxide. CRC Crit. Rev. Biochem. Mol. Biol. 39: 165 – 195. | en_US |
dc.identifier.citedreference | Drake, H.L. 2008. Old acetogens, new light. Ann. N.Y. Acad Sci. Incredible Anaerobes: From Physiology to Genomics to Fuels. In Press. | en_US |
dc.identifier.citedreference | Fontaine, F.E. et al. 1942. A new type of glucose fermentation by Clostridium thermoaceticum. J. Bacteriol. 43: 701 – 715. | en_US |
dc.identifier.citedreference | Ferry, J.G. 1992. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. Biol. 27: 473 – 502. | en_US |
dc.identifier.citedreference | Ingram-Smith, C. et al. 2005. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J. Bacteriol. 187: 2386 – 2394. | en_US |
dc.identifier.citedreference | Gorrell, A. et al. 2005. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 280: 10731 – 10742. | en_US |
dc.identifier.citedreference | Iyer, P.P. et al. 2004. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure 12: 559 – 567. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 1997. The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 9: 1 – 9. | en_US |
dc.identifier.citedreference | Drake, H.L. et al. 1994. Acetogenesis, acetogenic bacteria, and the acetyl-CoA pathway: past and current perspectives. In Acetogenesis. Drake, H.L., Ed.: 3 – 60. Chapman and Hall. New York. | en_US |
dc.identifier.citedreference | Lajoie, S.F. et al. 1988. Acetate production from hydrogen and [ 13 C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54: 2723 – 2727. | en_US |
dc.identifier.citedreference | Breznak, J.A. et al. 1986. Acetate synthesis from H 2 plus CO 2 by termite gut microbes. Appl. Environ. Microbiol. 52: 623 – 630. | en_US |
dc.identifier.citedreference | Breznak, J.A. et al. 1990. Microbial H 2 /CO 2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol, Rev. 87: 309 – 314. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 2003. Pyruvate:ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103: 2333 – 2346. | en_US |
dc.identifier.citedreference | Furdui, C. et al. 2000. The role of pyruvate: ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J. Biol. Chem. 275: 28494 – 28499. | en_US |
dc.identifier.citedreference | Bock, A.K. et al. 1996. Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 237: 35 – 44. | en_US |
dc.identifier.citedreference | Simpson, P.G. et al. 1993. Anabolic pathways in methanogens. In Methanogenesis: Ecology Physiology, Biochemistry & Genetics. Ferry, J.G., Ed.: 445 – 472. Chapman & Hall. London. | en_US |
dc.identifier.citedreference | Yoon, K.S. et al. 1999. Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. J. Biol. Chem. 274: 29772 – 29778. | en_US |
dc.identifier.citedreference | Horner, D.S. et al. 1999. A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: Implications for the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 16: 1280 – 1291. | en_US |
dc.identifier.citedreference | Chabriere, E. et al. 1999. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat. Struct. Biol. 6: 182 – 190. | en_US |
dc.identifier.citedreference | Muller, Y.A. et al. 1993. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1: 95 – 103. | en_US |
dc.identifier.citedreference | Furdui, C. et al. 2002. The roles of coenzyme A in the pyruvate:ferredoxin oxidoreductase reaction mechanism: rate enhancement of election transfer from a radical intermediate to an iron-sulfur cluster. Biochemistry 41: 9921 – 9937. | en_US |
dc.identifier.citedreference | Breslow, R. 1957. Rapid deuterium exchange in thiazolium salts. J. Am. Chem. Soc. 79: 1762 – 1763. | en_US |
dc.identifier.citedreference | Drake, H.L. et al. 1981. Purification of five components from Clostridium thermoacticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J. Biol. Chem. 256: 11137 – 11144. | en_US |
dc.identifier.citedreference | Menon, S. et al. 1996. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Biochemistry 35: 12119 – 12125. | en_US |
dc.identifier.citedreference | Schulman, M. et al. 1973. Total synthesis of acetate from CO 2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO 2. J. Biol. Chem. 248: 6255 – 6261. | en_US |
dc.identifier.citedreference | Chabriere, E. et al. 2001. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Science 294: 2559 – 2563. | en_US |
dc.identifier.citedreference | Mansoorabadi, S.O. et al. 2006. EPR spectroscopic and computational characterization of the hydroxyethylidene-thiamine pyrophosphate radical intermediate of pyruvate: ferredoxin oxidoreductase. Biochemistry 45: 7122 – 7131. | en_US |
dc.identifier.citedreference | Astashkin, A.V. et al. 2006. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle. J. Am. Chem. Soc. 128: 3888 – 3889. | en_US |
dc.identifier.citedreference | Menon, S. et al. 1997. Mechanism of the Clostridium thermoaceticum pyruvate:ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical. Biochemistry 36: 8484 – 8494. | en_US |
dc.identifier.citedreference | Pieulle, L. et al. 1999. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur. J. Biochem. 264: 500 – 508. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 2007. Nickel and the carbon cycle. J. Inorg. Biochem. 101: 1657 – 1666. | en_US |
dc.identifier.citedreference | Svetlitchnyi, V. et al. 2001. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J. Bacteriol. 183: 5134 – 5144. | en_US |
dc.identifier.citedreference | Meyer, O. et al. 2000. The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol. Chem. 381: 865 – 876. | en_US |
dc.identifier.citedreference | Meyer, O. et al. 1993. Biochemistry of the aerobic utilization of carbon monoxide. In Microbial Growth on C 1 Compounds. Murrell, J.C. & D.P. Kelly, Eds.: 433 – 459. Intercept, Ltd. Andover, MA. | en_US |
dc.identifier.citedreference | Gnida, M. et al. 2003. A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy. Biochemistry 42: 222 – 230. | en_US |
dc.identifier.citedreference | Bates, D.M. et al. 2000. Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe-4S](2+) cluster to oxygen. J. Biol. Chem. 275: 6234 – 6240. | en_US |
dc.identifier.citedreference | Dobbek, H. et al. 1999. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc. Natl. Acad. Sci. USA 96: 8884 – 8889. | en_US |
dc.identifier.citedreference | Drennan, C.L. et al. 2001. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc. Natl. Acad. Sci. USA 98: 11973 – 11978. | en_US |
dc.identifier.citedreference | Doukov, T.I. et al. 2002. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298: 567 – 572. | en_US |
dc.identifier.citedreference | Dobbek, H. et al. 2001. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293: 1281 – 1285. | en_US |
dc.identifier.citedreference | Darnault, C. et al. 2003. Ni-Zn-[Fe(4)-S(4)] and Ni-Ni-[Fe(4)-S(4)] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat. Struct. Biol. 10: 271 – 279. | en_US |
dc.identifier.citedreference | Dobbek, H. et al. 2004. Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. J. Am. Chem. Soc. 126: 5382 – 5387. | en_US |
dc.identifier.citedreference | Sun, J. et al. 2007. Sulfur ligand substitution at the nickel(II) sites of cubane-type and cubanoid NiFe3S4 clusters relevant to the C-clusters of carbon monoxide dehydrogenase. Inorg. Chem. 46: 2691 – 2699. | en_US |
dc.identifier.citedreference | Kim, E.J. et al. 2004. Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in ni-containing carbon monoxide dehydrogenases. Biochemistry 43: 5728 – 5734. | en_US |
dc.identifier.citedreference | Drennan, C.L. et al. 2004. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J. Biol. Inorg. Chem. 9: 511 – 515. | en_US |
dc.identifier.citedreference | Parkin, A. et al. 2007. Rapid electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 129: 10328 – 10329. | en_US |
dc.identifier.citedreference | Fontecilla-Camps, J.-C. et al. 1999. Nickel-iron-sulfur active sites: hydrogenase and CO dehydrogenase. In Advances in Inorganic Chemistry, Vol. 47. Sykes, A.G. & R. Cammack, Eds.: 283 – 333. Academic Press, Inc. San Diego. | en_US |
dc.identifier.citedreference | Seravalli, J. et al. 1999. Mechanism of transfer of the methyl group from (6S)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from Clostridium thermoaceticum: a key step in the Wood-Ljungdahl pathway of acetyl-CoA synthesis. Biochemistry 38: 5728 – 5735. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. et al. 1982. EPR evidence for nickel substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem. Biophys. Res. Commun. 108: 658 – 663. | en_US |
dc.identifier.citedreference | Seravalli, J. et al. 2000. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39: 1274 – 1277. | en_US |
dc.identifier.citedreference | Maynard, E.L. et al. 1999. Evidence of a molecular tunnel connecting the active sites for CO 2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J. Am. Chem. Soc. 121: 9221 – 9222. | en_US |
dc.identifier.citedreference | Svetlitchnyi, V. et al. 2004. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc. Natl. Acad. Sci. USA 101: 446 – 451. | en_US |
dc.identifier.citedreference | Bramlett, M.R. et al. 2006. Mossbauer and EPR study of recombinant acetyl-CoA synthase from Moorella thermoacetica. Biochemistry 45: 8674 – 8685. | en_US |
dc.identifier.citedreference | Lindahl, P.A. 2004. Acetyl-coenzyme A synthase: the case for a Ni p 0 -Based mechanism of catalysis. J. Biol. Inorg. Chem. 9: 516 – 524. | en_US |
dc.identifier.citedreference | Brunold, T.C. 2004. Spectroscopic and computational insights into the geometric and electronic properties of the A cluster of acetyl-coenzyme A synthase. J. Biol. Inorg. Chem. 9: 533 – 541. | en_US |
dc.identifier.citedreference | Seravalli, J. et al. 2002. Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the auto-trophic Wood-Ljungdahl pathway. Biochemistry 41: 1807 – 1819. | en_US |
dc.identifier.citedreference | Shin, W. et al. 1993. Heterogeneous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 115: 5522 – 5526. | en_US |
dc.identifier.citedreference | Barondeau, D.P. et al. 1997. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis. J. Am. Chem. Soc. 119: 3959 – 3970. | en_US |
dc.identifier.citedreference | Seravalli, J. et al. 2004. Evidence that Ni-Ni acetyl-CoA synthase is active and that the Cu-Ni enzyme is not. Biochemistry 43: 3944 – 3955. | en_US |
dc.identifier.citedreference | Lu, W.P. et al. 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J. Biol. Chem. 266: 3554 – 3564. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. 1991. Enzymology of the acetyl-CoA pathway of CO 2 fixation. CRC Crit. Rev. Biochem. Mol. Biol. 26: 261 – 300. | en_US |
dc.identifier.citedreference | Ljungdahl, L.G. et al. 1978. Formate dehydrogenase, a selenium-tungsten enzyme from Clostridium thermoaceticum. Methods Enzymol. 53: 360 – 372. | en_US |
dc.identifier.citedreference | Lovell, C.R. et al. 1988. Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch. Microbiol. 149: 280 – 285. | en_US |
dc.identifier.citedreference | Lovell, C.R. et al. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29: 5687 – 5694. | en_US |
dc.identifier.citedreference | Moore, M.R. et al. 1974. Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J. Biol. Chem. 249: 5250 – 5253. | en_US |
dc.identifier.citedreference | Clark, J.E. et al. 1984. Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J. Biol. Chem. 259: 10845 – 10889. | en_US |
dc.identifier.citedreference | Park, E.Y. et al. 1991. 5,10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In Chemistry and Biochemistry of Flavoenzymes, Vol. 1. Miller, F., Ed.: 389 – 400. CRC Press. Boca Raton, FL. | en_US |
dc.identifier.citedreference | Hu, S.-I. et al. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein. J. Biol. Chem. 259: 8892 – 8897. | en_US |
dc.identifier.citedreference | Ragsdale, S.W. et al. 1987. MÖssbauer, EPR, and optical studies of the corrinoid/Fe-S protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum. J. Biol. Chem. 262: 14289 – 14297. | en_US |
dc.identifier.citedreference | Banerjee, R. et al. 2003. The many faces of vitamin B 12: catalysis by cobalamin-dependent enzymes. Ann. Rev. Biochem. 72: 209 – 247. | en_US |
dc.identifier.citedreference | Roberts, D.L. et al. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc. Natl. Acad. Sci. USA 86: 32 – 36. | en_US |
dc.identifier.citedreference | Roberts, D.L. et al. 1994. The reductive acetyl-CoA pathway: sequence and heterologous expression of active CH 3 -H 4 folate:corrinoid/iron sulfur protein methyltransferase from Clostridium themoaceticum. J. Bacteriol. 176: 6127 – 6130. | en_US |
dc.identifier.citedreference | Lu, W.-P. et al. 1993. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J. Biol. Chem. 268: 5605 – 5614. | en_US |
dc.identifier.citedreference | Doukov, T. et al. 1995. Preliminary X-ray diffraction analysis of the methyltetrahydrofolate:corrinoid/iron sulfur protein methyltransferase from Clostridium themoaceticum. Acta Crystallographa. D51: Part 6: 1092 – 1093. | en_US |
dc.identifier.citedreference | Doukov, T.I. et al. 2007. Structural and kinetic evidence for an extended hydrogen bonding network in catalysis of methyl group transfer: role of an active site asparagine residue in activation of methyl transfer by methyltransferases. J. Biol. Chem. 282: 6609 – 6618. | en_US |
dc.identifier.citedreference | Seravalli, J. et al. 1999. Binding of (6R,S)-methyltetrahydrofolate to methyltransferase from Clostridium thermoaceticum: role of protonation of methyltetrahydrofolate in the mechanism of methyl transfer. Biochemistry 38: 5736 – 5745. | en_US |
dc.identifier.citedreference | Doukov, T. et al. 2000. Crystal structure of a methyltetrahydrofolate and corrinoid dependent methyltransferase. Structure 8: 817 – 830. | en_US |
dc.identifier.citedreference | Svetlitchnaia, T. et al. 2006. Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis. Proc. Natl. Acad. Sci. USA 103: 14331 – 14336. | en_US |
dc.identifier.citedreference | Smith, A.E. et al. 2000. Protonation state of methyltetrahydrofolate in a binary complex with cobalamin-dependent methionine synthase. Biochemistry 39: 13880 – 13890. | en_US |
dc.identifier.citedreference | Zhao, S. et al. 1995. Mechanistic studies of the methyltransferase from Clostridium thermoaceticum: origin of the pH dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein. Biochemistry 34: 15075 – 15083. | en_US |
dc.identifier.citedreference | Matthews, R.G. 2001. Cobalamin-dependent methyltransferases. Acc. Chem. Res. 34: 681 – 689. | en_US |
dc.identifier.citedreference | Menon, S. et al. 1999. The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J. Biol. Chem. 274: 11513 – 11518. | en_US |
dc.identifier.citedreference | Menon, S. et al. 1998. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetyl-CoA synthesis. Biochemistry 37: 5689 – 5698. | en_US |
dc.identifier.citedreference | Evans, J.C. et al. 2004. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc. Natl. Acad. Sci. USA 101: 3729 – 3736. | en_US |
dc.identifier.citedreference | Taurog, R.E. et al. 2006. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Biochemistry 45: 5083 – 5091. | en_US |
dc.identifier.citedreference | Peters, J.W. et al. 1998. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282: 1853 – 1858. | en_US |
dc.identifier.citedreference | Nicolet, Y. et al. 2000. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem. Sci. 25: 138 – 143. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.