Show simple item record

Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis

dc.contributor.authorRagsdale, Stephen W.en_US
dc.date.accessioned2010-06-01T20:36:03Z
dc.date.available2010-06-01T20:36:03Z
dc.date.issued2008-03en_US
dc.identifier.citationRagsdale , Stephen W. (2008). " Enzymology of the Wood–Ljungdahl Pathway of Acetogenesis ." Annals of the New York Academy of Sciences 1125(1 Incredible Anaerobes From Physiology to Genomics to Fuels ): 129-136. <http://hdl.handle.net/2027.42/73708>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73708
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18378591&dopt=citationen_US
dc.format.extent202185 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rights2008 New York Academy of Sciencesen_US
dc.subject.otherAcetogenic Bacteriaen_US
dc.subject.otherCarbon Dioxide Fixationen_US
dc.subject.otherCarbon Monoxideen_US
dc.subject.otherCobalaminen_US
dc.titleEnzymology of the Wood–Ljungdahl Pathway of Acetogenesisen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USAen_US
dc.identifier.pmid18378591en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73708/1/annals.1419.015.pdf
dc.identifier.doi10.1196/annals.1419.015en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreferenceRagsdale, S.W. 2006. Metalloenzymes in the reduction of one-carbon compounds. In Biological Inorganic Chemistry: Structure and Reactivity. Bertini, I., et al., Eds.: 452 – 467. University Science Books. Mill Valley, CA.en_US
dc.identifier.citedreferenceRagsdale, S.W. 2004. Life with carbon monoxide. CRC Crit. Rev. Biochem. Mol. Biol. 39: 165 – 195.en_US
dc.identifier.citedreferenceDrake, H.L. 2008. Old acetogens, new light. Ann. N.Y. Acad Sci. Incredible Anaerobes: From Physiology to Genomics to Fuels. In Press.en_US
dc.identifier.citedreferenceFontaine, F.E. et al. 1942. A new type of glucose fermentation by Clostridium thermoaceticum. J. Bacteriol. 43: 701 – 715.en_US
dc.identifier.citedreferenceFerry, J.G. 1992. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. Biol. 27: 473 – 502.en_US
dc.identifier.citedreferenceIngram-Smith, C. et al. 2005. Characterization of the acetate binding pocket in the Methanosarcina thermophila acetate kinase. J. Bacteriol. 187: 2386 – 2394.en_US
dc.identifier.citedreferenceGorrell, A. et al. 2005. Structural and kinetic analyses of arginine residues in the active site of the acetate kinase from Methanosarcina thermophila. J. Biol. Chem. 280: 10731 – 10742.en_US
dc.identifier.citedreferenceIyer, P.P. et al. 2004. Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila. Structure 12: 559 – 567.en_US
dc.identifier.citedreferenceRagsdale, S.W. 1997. The Eastern and Western branches of the Wood/Ljungdahl pathway: how the East and West were won. BioFactors 9: 1 – 9.en_US
dc.identifier.citedreferenceDrake, H.L. et al. 1994. Acetogenesis, acetogenic bacteria, and the acetyl-CoA pathway: past and current perspectives. In Acetogenesis. Drake, H.L., Ed.: 3 – 60. Chapman and Hall. New York.en_US
dc.identifier.citedreferenceLajoie, S.F. et al. 1988. Acetate production from hydrogen and [ 13 C]carbon dioxide by the microflora of human feces. Appl. Environ. Microbiol. 54: 2723 – 2727.en_US
dc.identifier.citedreferenceBreznak, J.A. et al. 1986. Acetate synthesis from H 2 plus CO 2 by termite gut microbes. Appl. Environ. Microbiol. 52: 623 – 630.en_US
dc.identifier.citedreferenceBreznak, J.A. et al. 1990. Microbial H 2 /CO 2 acetogenesis in animal guts: nature and nutritional significance. FEMS Microbiol, Rev. 87: 309 – 314.en_US
dc.identifier.citedreferenceRagsdale, S.W. 2003. Pyruvate:ferredoxin oxidoreductase and its radical intermediate. Chem. Rev. 103: 2333 – 2346.en_US
dc.identifier.citedreferenceFurdui, C. et al. 2000. The role of pyruvate: ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway. J. Biol. Chem. 275: 28494 – 28499.en_US
dc.identifier.citedreferenceBock, A.K. et al. 1996. Catalytic properties, molecular composition and sequence alignments of pyruvate: ferredoxin oxidoreductase from the methanogenic archaeon Methanosarcina barkeri (strain Fusaro). Eur. J. Biochem. 237: 35 – 44.en_US
dc.identifier.citedreferenceSimpson, P.G. et al. 1993. Anabolic pathways in methanogens. In Methanogenesis: Ecology Physiology, Biochemistry & Genetics. Ferry, J.G., Ed.: 445 – 472. Chapman & Hall. London.en_US
dc.identifier.citedreferenceYoon, K.S. et al. 1999. Rubredoxin from the green sulfur bacterium Chlorobium tepidum functions as an electron acceptor for pyruvate ferredoxin oxidoreductase. J. Biol. Chem. 274: 29772 – 29778.en_US
dc.identifier.citedreferenceHorner, D.S. et al. 1999. A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: Implications for the evolution of anaerobic eukaryotes. Mol. Biol. Evol. 16: 1280 – 1291.en_US
dc.identifier.citedreferenceChabriere, E. et al. 1999. Crystal structures of the key anaerobic enzyme pyruvate:ferredoxin oxidoreductase, free and in complex with pyruvate. Nat. Struct. Biol. 6: 182 – 190.en_US
dc.identifier.citedreferenceMuller, Y.A. et al. 1993. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure 1: 95 – 103.en_US
dc.identifier.citedreferenceFurdui, C. et al. 2002. The roles of coenzyme A in the pyruvate:ferredoxin oxidoreductase reaction mechanism: rate enhancement of election transfer from a radical intermediate to an iron-sulfur cluster. Biochemistry 41: 9921 – 9937.en_US
dc.identifier.citedreferenceBreslow, R. 1957. Rapid deuterium exchange in thiazolium salts. J. Am. Chem. Soc. 79: 1762 – 1763.en_US
dc.identifier.citedreferenceDrake, H.L. et al. 1981. Purification of five components from Clostridium thermoacticum which catalyze synthesis of acetate from pyruvate and methyltetrahydrofolate. Properties of phosphotransacetylase. J. Biol. Chem. 256: 11137 – 11144.en_US
dc.identifier.citedreferenceMenon, S. et al. 1996. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis. Biochemistry 35: 12119 – 12125.en_US
dc.identifier.citedreferenceSchulman, M. et al. 1973. Total synthesis of acetate from CO 2. VII. Evidence with Clostridium thermoaceticum that the carboxyl of acetate is derived from the carboxyl of pyruvate by transcarboxylation and not by fixation of CO 2. J. Biol. Chem. 248: 6255 – 6261.en_US
dc.identifier.citedreferenceChabriere, E. et al. 2001. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase. Science 294: 2559 – 2563.en_US
dc.identifier.citedreferenceMansoorabadi, S.O. et al. 2006. EPR spectroscopic and computational characterization of the hydroxyethylidene-thiamine pyrophosphate radical intermediate of pyruvate: ferredoxin oxidoreductase. Biochemistry 45: 7122 – 7131.en_US
dc.identifier.citedreferenceAstashkin, A.V. et al. 2006. Pulsed electron paramagnetic resonance experiments identify the paramagnetic intermediates in the pyruvate ferredoxin oxidoreductase catalytic cycle. J. Am. Chem. Soc. 128: 3888 – 3889.en_US
dc.identifier.citedreferenceMenon, S. et al. 1997. Mechanism of the Clostridium thermoaceticum pyruvate:ferredoxin oxidoreductase: evidence for the common catalytic intermediacy of the hydroxyethylthiamine pyropyrosphate radical. Biochemistry 36: 8484 – 8494.en_US
dc.identifier.citedreferencePieulle, L. et al. 1999. Structural and kinetic studies of the pyruvate-ferredoxin oxidoreductase/ferredoxin complex from Desulfovibrio africanus. Eur. J. Biochem. 264: 500 – 508.en_US
dc.identifier.citedreferenceRagsdale, S.W. 2007. Nickel and the carbon cycle. J. Inorg. Biochem. 101: 1657 – 1666.en_US
dc.identifier.citedreferenceSvetlitchnyi, V. et al. 2001. Two membrane-associated NiFeS-carbon monoxide dehydrogenases from the anaerobic carbon-monoxide-utilizing eubacterium Carboxydothermus hydrogenoformans. J. Bacteriol. 183: 5134 – 5144.en_US
dc.identifier.citedreferenceMeyer, O. et al. 2000. The role of Se, Mo and Fe in the structure and function of carbon monoxide dehydrogenase. Biol. Chem. 381: 865 – 876.en_US
dc.identifier.citedreferenceMeyer, O. et al. 1993. Biochemistry of the aerobic utilization of carbon monoxide. In Microbial Growth on C 1 Compounds. Murrell, J.C. & D.P. Kelly, Eds.: 433 – 459. Intercept, Ltd. Andover, MA.en_US
dc.identifier.citedreferenceGnida, M. et al. 2003. A novel binuclear [CuSMo] cluster at the active site of carbon monoxide dehydrogenase: characterization by X-ray absorption spectroscopy. Biochemistry 42: 222 – 230.en_US
dc.identifier.citedreferenceBates, D.M. et al. 2000. Substitution of leucine 28 with histidine in the Escherichia coli transcription factor FNR results in increased stability of the [4Fe-4S](2+) cluster to oxygen. J. Biol. Chem. 275: 6234 – 6240.en_US
dc.identifier.citedreferenceDobbek, H. et al. 1999. Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine. Proc. Natl. Acad. Sci. USA 96: 8884 – 8889.en_US
dc.identifier.citedreferenceDrennan, C.L. et al. 2001. Life on carbon monoxide: X-ray structure of Rhodospirillum rubrum Ni-Fe-S carbon monoxide dehydrogenase. Proc. Natl. Acad. Sci. USA 98: 11973 – 11978.en_US
dc.identifier.citedreferenceDoukov, T.I. et al. 2002. A Ni-Fe-Cu center in a bifunctional carbon monoxide dehydrogenase/acetyl-CoA synthase. Science 298: 567 – 572.en_US
dc.identifier.citedreferenceDobbek, H. et al. 2001. Crystal structure of a carbon monoxide dehydrogenase reveals a [Ni-4Fe-5S] cluster. Science 293: 1281 – 1285.en_US
dc.identifier.citedreferenceDarnault, C. et al. 2003. Ni-Zn-[Fe(4)-S(4)] and Ni-Ni-[Fe(4)-S(4)] clusters in closed and open alpha subunits of acetyl-CoA synthase/carbon monoxide dehydrogenase. Nat. Struct. Biol. 10: 271 – 279.en_US
dc.identifier.citedreferenceDobbek, H. et al. 2004. Carbon monoxide induced decomposition of the active site [Ni-4Fe-5S] cluster of CO dehydrogenase. J. Am. Chem. Soc. 126: 5382 – 5387.en_US
dc.identifier.citedreferenceSun, J. et al. 2007. Sulfur ligand substitution at the nickel(II) sites of cubane-type and cubanoid NiFe3S4 clusters relevant to the C-clusters of carbon monoxide dehydrogenase. Inorg. Chem. 46: 2691 – 2699.en_US
dc.identifier.citedreferenceKim, E.J. et al. 2004. Evidence for a proton transfer network and a required persulfide-bond-forming cysteine residue in ni-containing carbon monoxide dehydrogenases. Biochemistry 43: 5728 – 5734.en_US
dc.identifier.citedreferenceDrennan, C.L. et al. 2004. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures. J. Biol. Inorg. Chem. 9: 511 – 515.en_US
dc.identifier.citedreferenceParkin, A. et al. 2007. Rapid electrocatalytic CO2/CO interconversions by Carboxydothermus hydrogenoformans CO dehydrogenase I on an electrode. J. Am. Chem. Soc. 129: 10328 – 10329.en_US
dc.identifier.citedreferenceFontecilla-Camps, J.-C. et al. 1999. Nickel-iron-sulfur active sites: hydrogenase and CO dehydrogenase. In Advances in Inorganic Chemistry, Vol. 47. Sykes, A.G. & R. Cammack, Eds.: 283 – 333. Academic Press, Inc. San Diego.en_US
dc.identifier.citedreferenceSeravalli, J. et al. 1999. Mechanism of transfer of the methyl group from (6S)-methyltetrahydrofolate to the corrinoid/iron-sulfur protein catalyzed by the methyltransferase from Clostridium thermoaceticum: a key step in the Wood-Ljungdahl pathway of acetyl-CoA synthesis. Biochemistry 38: 5728 – 5735.en_US
dc.identifier.citedreferenceRagsdale, S.W. et al. 1982. EPR evidence for nickel substrate interaction in carbon monoxide dehydrogenase from Clostridium thermoaceticum. Biochem. Biophys. Res. Commun. 108: 658 – 663.en_US
dc.identifier.citedreferenceSeravalli, J. et al. 2000. Channeling of carbon monoxide during anaerobic carbon dioxide fixation. Biochemistry 39: 1274 – 1277.en_US
dc.identifier.citedreferenceMaynard, E.L. et al. 1999. Evidence of a molecular tunnel connecting the active sites for CO 2 reduction and acetyl-CoA synthesis in acetyl-CoA synthase from Clostridium thermoaceticum. J. Am. Chem. Soc. 121: 9221 – 9222.en_US
dc.identifier.citedreferenceSvetlitchnyi, V. et al. 2004. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans. Proc. Natl. Acad. Sci. USA 101: 446 – 451.en_US
dc.identifier.citedreferenceBramlett, M.R. et al. 2006. Mossbauer and EPR study of recombinant acetyl-CoA synthase from Moorella thermoacetica. Biochemistry 45: 8674 – 8685.en_US
dc.identifier.citedreferenceLindahl, P.A. 2004. Acetyl-coenzyme A synthase: the case for a Ni p 0 -Based mechanism of catalysis. J. Biol. Inorg. Chem. 9: 516 – 524.en_US
dc.identifier.citedreferenceBrunold, T.C. 2004. Spectroscopic and computational insights into the geometric and electronic properties of the A cluster of acetyl-coenzyme A synthase. J. Biol. Inorg. Chem. 9: 533 – 541.en_US
dc.identifier.citedreferenceSeravalli, J. et al. 2002. Rapid kinetic studies of acetyl-CoA synthesis: evidence supporting the catalytic intermediacy of a paramagnetic NiFeC species in the auto-trophic Wood-Ljungdahl pathway. Biochemistry 41: 1807 – 1819.en_US
dc.identifier.citedreferenceShin, W. et al. 1993. Heterogeneous nickel environments in carbon monoxide dehydrogenase from Clostridium thermoaceticum. J. Am. Chem. Soc. 115: 5522 – 5526.en_US
dc.identifier.citedreferenceBarondeau, D.P. et al. 1997. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis. J. Am. Chem. Soc. 119: 3959 – 3970.en_US
dc.identifier.citedreferenceSeravalli, J. et al. 2004. Evidence that Ni-Ni acetyl-CoA synthase is active and that the Cu-Ni enzyme is not. Biochemistry 43: 3944 – 3955.en_US
dc.identifier.citedreferenceLu, W.P. et al. 1991. Reductive activation of the coenzyme A/acetyl-CoA isotopic exchange reaction catalyzed by carbon monoxide dehydrogenase from Clostridium thermoaceticum and its inhibition by nitrous oxide and carbon monoxide. J. Biol. Chem. 266: 3554 – 3564.en_US
dc.identifier.citedreferenceRagsdale, S.W. 1991. Enzymology of the acetyl-CoA pathway of CO 2 fixation. CRC Crit. Rev. Biochem. Mol. Biol. 26: 261 – 300.en_US
dc.identifier.citedreferenceLjungdahl, L.G. et al. 1978. Formate dehydrogenase, a selenium-tungsten enzyme from Clostridium thermoaceticum. Methods Enzymol. 53: 360 – 372.en_US
dc.identifier.citedreferenceLovell, C.R. et al. 1988. Cloning and expression in Escherichia coli of the Clostridium thermoaceticum gene encoding thermostable formyltetrahydrofolate synthetase. Arch. Microbiol. 149: 280 – 285.en_US
dc.identifier.citedreferenceLovell, C.R. et al. 1990. Primary structure of the thermostable formyltetrahydrofolate synthetase from Clostridium thermoaceticum. Biochemistry 29: 5687 – 5694.en_US
dc.identifier.citedreferenceMoore, M.R. et al. 1974. Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J. Biol. Chem. 249: 5250 – 5253.en_US
dc.identifier.citedreferenceClark, J.E. et al. 1984. Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J. Biol. Chem. 259: 10845 – 10889.en_US
dc.identifier.citedreferencePark, E.Y. et al. 1991. 5,10-methylenetetrahydrofolate reductases: iron-sulfur-zinc flavoproteins of two acetogenic clostridia. In Chemistry and Biochemistry of Flavoenzymes, Vol. 1. Miller, F., Ed.: 389 – 400. CRC Press. Boca Raton, FL.en_US
dc.identifier.citedreferenceHu, S.-I. et al. 1984. Acetate synthesis from carbon monoxide by Clostridium thermoaceticum. Purification of the corrinoid protein. J. Biol. Chem. 259: 8892 – 8897.en_US
dc.identifier.citedreferenceRagsdale, S.W. et al. 1987. MÖssbauer, EPR, and optical studies of the corrinoid/Fe-S protein involved in the synthesis of acetyl-CoA by Clostridium thermoaceticum. J. Biol. Chem. 262: 14289 – 14297.en_US
dc.identifier.citedreferenceBanerjee, R. et al. 2003. The many faces of vitamin B 12: catalysis by cobalamin-dependent enzymes. Ann. Rev. Biochem. 72: 209 – 247.en_US
dc.identifier.citedreferenceRoberts, D.L. et al. 1989. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase. Proc. Natl. Acad. Sci. USA 86: 32 – 36.en_US
dc.identifier.citedreferenceRoberts, D.L. et al. 1994. The reductive acetyl-CoA pathway: sequence and heterologous expression of active CH 3 -H 4 folate:corrinoid/iron sulfur protein methyltransferase from Clostridium themoaceticum. J. Bacteriol. 176: 6127 – 6130.en_US
dc.identifier.citedreferenceLu, W.-P. et al. 1993. Sequence and expression of the gene encoding the corrinoid/iron-sulfur protein from Clostridium thermoaceticum and reconstitution of the recombinant protein to full activity. J. Biol. Chem. 268: 5605 – 5614.en_US
dc.identifier.citedreferenceDoukov, T. et al. 1995. Preliminary X-ray diffraction analysis of the methyltetrahydrofolate:corrinoid/iron sulfur protein methyltransferase from Clostridium themoaceticum. Acta Crystallographa. D51: Part 6: 1092 – 1093.en_US
dc.identifier.citedreferenceDoukov, T.I. et al. 2007. Structural and kinetic evidence for an extended hydrogen bonding network in catalysis of methyl group transfer: role of an active site asparagine residue in activation of methyl transfer by methyltransferases. J. Biol. Chem. 282: 6609 – 6618.en_US
dc.identifier.citedreferenceSeravalli, J. et al. 1999. Binding of (6R,S)-methyltetrahydrofolate to methyltransferase from Clostridium thermoaceticum: role of protonation of methyltetrahydrofolate in the mechanism of methyl transfer. Biochemistry 38: 5736 – 5745.en_US
dc.identifier.citedreferenceDoukov, T. et al. 2000. Crystal structure of a methyltetrahydrofolate and corrinoid dependent methyltransferase. Structure 8: 817 – 830.en_US
dc.identifier.citedreferenceSvetlitchnaia, T. et al. 2006. Structural insights into methyltransfer reactions of a corrinoid iron-sulfur protein involved in acetyl-CoA synthesis. Proc. Natl. Acad. Sci. USA 103: 14331 – 14336.en_US
dc.identifier.citedreferenceSmith, A.E. et al. 2000. Protonation state of methyltetrahydrofolate in a binary complex with cobalamin-dependent methionine synthase. Biochemistry 39: 13880 – 13890.en_US
dc.identifier.citedreferenceZhao, S. et al. 1995. Mechanistic studies of the methyltransferase from Clostridium thermoaceticum: origin of the pH dependence of the methyl group transfer from methyltetrahydrofolate to the corrinoid/iron-sulfur protein. Biochemistry 34: 15075 – 15083.en_US
dc.identifier.citedreferenceMatthews, R.G. 2001. Cobalamin-dependent methyltransferases. Acc. Chem. Res. 34: 681 – 689.en_US
dc.identifier.citedreferenceMenon, S. et al. 1999. The role of an iron-sulfur cluster in an enzymatic methylation reaction: methylation of CO dehydrogenase/acetyl-CoA synthase by the methylated corrinoid iron-sulfur protein. J. Biol. Chem. 274: 11513 – 11518.en_US
dc.identifier.citedreferenceMenon, S. et al. 1998. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetyl-CoA synthesis. Biochemistry 37: 5689 – 5698.en_US
dc.identifier.citedreferenceEvans, J.C. et al. 2004. Structures of the N-terminal modules imply large domain motions during catalysis by methionine synthase. Proc. Natl. Acad. Sci. USA 101: 3729 – 3736.en_US
dc.identifier.citedreferenceTaurog, R.E. et al. 2006. Synergistic, random sequential binding of substrates in cobalamin-independent methionine synthase. Biochemistry 45: 5083 – 5091.en_US
dc.identifier.citedreferencePeters, J.W. et al. 1998. X-ray crystal structure of the Fe-only hydrogenase (Cpl) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282: 1853 – 1858.en_US
dc.identifier.citedreferenceNicolet, Y. et al. 2000. A novel FeS cluster in Fe-only hydrogenases. Trends Biochem. Sci. 25: 138 – 143.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.