Show simple item record

Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest

dc.contributor.authorLai, Chun-Taen_US
dc.contributor.authorKatul, Gabriel G.en_US
dc.contributor.authorButnor, J.en_US
dc.contributor.authorSiqueira, M. B. S.en_US
dc.contributor.authorEllsworth, David S.en_US
dc.contributor.authorMaier, C.en_US
dc.contributor.authorJohnsen, Kurt H.en_US
dc.contributor.authorMckeand, S.en_US
dc.contributor.authorOren, Ramen_US
dc.date.accessioned2010-06-01T20:36:18Z
dc.date.available2010-06-01T20:36:18Z
dc.date.issued2002-09en_US
dc.identifier.citationLai, C.-T.; Katul, G.; Butnor, J.; Siqueira, M.; Ellsworth, D.; Maier, C.; Johnsen, K.; Mckeand, S.; Oren, R. (2002). "Modelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine forest." Plant, Cell & Environment 25(9): 1095-1120. <http://hdl.handle.net/2027.42/73712>en_US
dc.identifier.issn0140-7791en_US
dc.identifier.issn1365-3040en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73712
dc.description.abstractUsing a combination of model simulations and detailed measurements at a hierarchy of scales conducted at a sandhills forest site, the effect of fertilization on net ecosystem exchange ( NEE ) and its components in 6-year-old Pinus taeda stands was quantified. The detailed measurements, collected over a 20-d period in September and October, included gas exchange and eddy covariance fluxes, sampled for a 10-d period each at the fertilized stand and at the control stand. Respiration from the forest floor and above-ground biomass was measured using chambers during the experiment. Fertilization doubled leaf area index (LAI) and increased leaf carboxylation capacity by 20%. However, this increase in total LAI translated into an increase of only 25% in modelled sunlit LAI and in canopy photosynthesis. It is shown that the same climatic and environmental conditions that enhance photosynthesis in the September and October periods also cause an increase in respiration The increases in respiration counterbalanced photosynthesis and resulted in negligible NEE differences between fertilized and control stands. The fact that total biomass of the fertilized stand exceeded 2·5 times that of the control, suggests that the counteracting effects cannot persist throughout the year. In fact, modelled annual carbon balance showed that gross primary productivity ( GPP ) increased by about 50% and that the largest enhancement in NEE occurred in the spring and autumn, during which cooler temperatures reduced respiration more than photosynthesis. The modelled difference in annual NEE between fertilized  and  control  stands  (approximately  200 1;g 2;C 3;m −2 y −1 )  suggest that the effect of fertilization was sufficiently large to transform the stand from a net terrestrial carbon source to a net sink.en_US
dc.format.extent693166 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights2002 Blackwell Publishing Ltden_US
dc.subject.otherBiosphere–Atmosphere Exchangeen_US
dc.subject.otherCanopy Carbon Uptakeen_US
dc.subject.otherFertilizationen_US
dc.subject.otherNet Ecosystem Exchangeen_US
dc.subject.otherTurbulence Modellingen_US
dc.titleModelling the limits on the response of net carbon exchange to fertilization in a south-eastern pine foresten_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, University of Michigan, 430 E. University, Ann Arbor, MI 48109-1115, USA anden_US
dc.contributor.affiliationotherNicholas School of the Environmental and Earth Science, Box 90328, Duke University,Durham, NC 27708-0328, USA,en_US
dc.contributor.affiliationotherUSDA Forest Service, Southern Research Station, 3041 Cornwallis Road, Research Triangle Park, NC 27707, USA,en_US
dc.contributor.affiliationotherCivil and Environmental Engineering, Duke University, Durham, NC 27708, USA,en_US
dc.contributor.affiliationotherCollege of Forest Resources, NC State University, Raleigh, NC 27695, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73712/1/j.1365-3040.2002.00896.x.pdf
dc.identifier.doi10.1046/j.1365-3040.2002.00896.xen_US
dc.identifier.sourcePlant, Cell & Environmenten_US
dc.identifier.citedreferenceAlbaugh T. J., Allen H. L., Dougherty P. M., Kress L. W., King J. S. ( 1998 ) Leaf area and above- and belowground growth responses of loblolly pine to nutrient and water additions. Forest Science 44, 317 – 328.en_US
dc.identifier.citedreferenceAllen   H. L. ( 1987 ) Forest  fertilizers. Journal  of  Forestry 85, 37 – 46.en_US
dc.identifier.citedreferenceBaldocchi D. D. & Meyers T. ( 1998 ) On using eco-physiological, micrometeorological and biogeochemical theory to evaluate carbon dioxide, water vapor and trace gas fluxes over vegetation: a perspective. Agricultural and Forest Meteorology 90, 1 – 25.en_US
dc.identifier.citedreferenceBeets P. N. & Whitehead D. ( 1996 ) Carbon partitioning in Pinus radiata stands in relation to foliage nitrogen status. Tree Physiology 16, 131 – 138.en_US
dc.identifier.citedreferenceBrix H. & Ebell L. F. ( 1969 ) Effects of nitrogen fertilization on growth, leaf area and photosynthesis rate in Douglas-fir. Forest Science 15, 189 – 196.en_US
dc.identifier.citedreferenceBurke M. K., Raynal D. J., Mitchell M. J. ( 1992 ) Soil nitrogen availability influences seasonal carbon allocation patterns in sugar maple ( Acer saccharum ). Canadian Journal of Forest Research 22, 447 – 456.en_US
dc.identifier.citedreferenceCampbell G. S. & Norman J. M. ( 1998 ) An Introduction to Environmental Biophysics. Springer-Verlag, New York, USA.en_US
dc.identifier.citedreferenceCastro M. S., Peterjohn W. T., Melillo J. M., Steudler P. A. ( 1994 ) Effects of nitrogen fertilization on the fluxes of N 2 O, CH 4, and CO 2 from soils in a Florida slash pine plantation. Canadian Journal of Forest Research 24, 9 – 13.en_US
dc.identifier.citedreferenceCiais P., Tans P. P., Trolier M., White J. W. C., Francey R. J. ( 1995 ) A  large  northern-hemisphere  terrestrial  CO 2  sink  indicated by the C-13/C-12 ratio of atmospheric CO 2. Science 269, 1098 – 1102.en_US
dc.identifier.citedreferenceClark K. L., Gholz H. L., Moncrieff J. B., Cropley F., Loescher H. W. ( 1999 ) Environmental controls over net exchanges of carbon dioxide from contrasting Florida ecosystems. Ecological Applications 9, 936 – 948.en_US
dc.identifier.citedreferenceCollatz G. J., Ball J. T., Grivet C., Berry J. A. ( 1991 ) Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology 54, 107 – 136.en_US
dc.identifier.citedreferenceCoops N. C., Waring R. H., Landsberg J. J. ( 1998 ) Assessing forest productivity in Australia and New Zealand using a physiologically-based model driven with averaged monthly weather data and satellite-derived estimates of canopy photosynthetic capacity. Forest Ecology and Management 104, 113 – 127.en_US
dc.identifier.citedreferenceCropper W. P. Jr ( 2000 ) SPM2: a simulation model for slash pine ( Pinus elliottii ) forests. Forest Ecology and Management 126, 201 – 212.en_US
dc.identifier.citedreferenceCropper W. P. Jr & Gholz H. L. ( 1991 ) In situ needle and fine root respiration in mature slash pine Pinus elliottii trees. Canadian Journal of Forest Research 21, 1589 – 1595.en_US
dc.identifier.citedreferenceDenmead O. T., Harper L. A., Sharpe R. R. ( 2000 ) Identifying sources and sinks of scalars in a corn canopy with inverse Lagrangian dispersion analysis. Agricultural and Forest Meteorology 104, 67 – 73.en_US
dc.identifier.citedreferenceEvans J. R. ( 1989 ) Photosynthesis and nitrogen relationships in leaves of C 3 plants. Oecologia 78, 9 – 19.en_US
dc.identifier.citedreferenceEwers B. E. & Oren R. ( 2000 ) Analysis of assumptions and errors in the calculation of stomatal conductance from sap flux measurements. Tree Physiology 20, 579 – 590.en_US
dc.identifier.citedreferenceEwers B. E., Oren R., Albaugh T. J., Dougherty P. M. ( 1999 ) Carry-over effects of water and nutrient supply on water use of Pinus taeda. Ecological Application 9, 513 – 525.en_US
dc.identifier.citedreferenceEwers B. E., Oren R., Johnsen K. H., Landsberg J. J. ( 2001 ) Estimating maximum mean canopy stomatal conductance for use in models. Canadian Journal of Forest Research 31, 198 – 207.en_US
dc.identifier.citedreferenceEwers B. E., Oren R., Sperry J. S. ( 2000 ) Influence of nutrient versus water supply on hydraulic architecture and water balance in Pinus taeda. Plant, Cell and Environment 23, 1055 – 1066.en_US
dc.identifier.citedreferenceFang C. & Moncrieff J. B. ( 1996 ) An improved dynamic chamber technique for measuring CO 2 efflux from the surface of soil. Functional Ecology 10, 297 – 305.en_US
dc.identifier.citedreferenceFarquhar G. D., Von Caemmerer S., Berry J. A. ( 1980 ) A biochemical model of photosynthetic CO 2 assimilation in leaves of C 3 species. Planta 149, 78 – 90.en_US
dc.identifier.citedreferenceField C. B. ( 1991 ) Ecological scaling of carbon gain to stress and resource availability. In Response of Plants to Multiple Stresses (eds H. A. Mooney, W. E. Winner & E. J. Pell ), pp. 35 – 65. Academic Press, San Diego, CA, USA.en_US
dc.identifier.citedreferenceField C. & Mooney H. A. ( 1986 ) The photosynthesis-nitrogen relationship in wild plants. In On the Economy of Plant Form and Function ed.( T. Givnish ), pp. 25 – 55. Cambridge University Press, Cambridge, UK.en_US
dc.identifier.citedreferenceGholz H. L., Vogel S. A., Cropper W. P. Jr,, Mckelvey K., Ewel K. C.,, R. O., Curran, P. J., ( 1991 ) Dynamics of canopy structure and light interception in Pinus elliottii stands, north Florida. Ecological Monographs 61, 33 – 51.en_US
dc.identifier.citedreferenceGu L. Shugart H. H. Fuentes J. D. Black T. A. & Shewchuk S. R. ( 1999 ) Micrometeorology, biophysical exchanges and NEE decomposition in a two-story boreal forest – development and test of an integrated model. Agricultural and Forest Meteorology 94, 123 – 148.en_US
dc.identifier.citedreferenceHaynes B. E. & Gower S. T. ( 1995 ) Below-ground carbon allocation in unfertilized and fertilized red pine plantations in northern Wisconsin. Tree Physiology 15 ( 5 ), 317 – 325.en_US
dc.identifier.citedreferenceHirose T. & Werger M. J. A. ( 1987 ) Maximizing daily canopy photosynthesis with respect to the leaf nitrogen allocation pattern in the canopy. Oecologia 72, 520 – 526.en_US
dc.identifier.citedreferenceHoughton R. A. Davidson E. A. & Woodwell G. M. ( 1998 ) Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeochemical Cycles 12, 25 – 34.en_US
dc.identifier.citedreferenceHsieh C. -I. Katul, G., Chi, T. -W., ( 2000 ) An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advances in Water Research 23, 765 – 772.en_US
dc.identifier.citedreferenceJohnsen K. H. Wear D. Oren R., et al.. ( 2001 ) Meeting global policy commitments: carbon sequestration and southern pine forests. Journal of Forestry 99, 14 – 21.en_US
dc.identifier.citedreferenceKatul G. G. & Albertson J. D. ( 1998 ) An investigation of higher order closure models for a forested canopy. Boundary Layer Meteorology 89, 47 – 74.en_US
dc.identifier.citedreferenceKatul G. G. & Chang W. H. ( 1999 ) Principal length scales in second-order closure models for canopy turbulence. Journal of Applied Meteorology 38, 1631 – 1643.en_US
dc.identifier.citedreferenceKatul G. G., Oren R., Ellsworth D. S., Hsieh C. -I., Phillips N., Lewin K. ( 1997 ) A Lagrangian dispersion model for predicting CO 2 sources, sinks, and fluxes in a uniform loblolly pine ( Pinus taeda L.) stand. Journal of Geophysical Research-Atmosphere 102, 9309 – 9321.en_US
dc.identifier.citedreferenceLai C. T., Katul G., Butnor J., Ellsworth D., Oren R. ( 2002 ) Modelling  night-time ecosystem respiration by a constrained source optimization method. Global Change Biology 8, 124 – 141.en_US
dc.identifier.citedreferenceLai C. -T., Katul, G., Ellsworth, D. S., Oren, R. ( 2000a ) Modeling vegetation-atmosphere CO 2 exchange by a coupled Eulerian–Lagrangian approach. Boundary Layer Meteorology 95, 91 – 12.en_US
dc.identifier.citedreferenceLai C. -T., Katul, G., Oren, R., Ellsworth, D., SchÄfer, K. ( 2000b ) Modeling CO 2 and water vapor turbulent flux distributions within a forest canopy. Journal of Geophysical Research – Atmosphere 105, 26333 – 26351.en_US
dc.identifier.citedreferenceLandsberg J. J. ( 1986 ) Physiological Ecology of Forest Production. Academic Press, London, UK.en_US
dc.identifier.citedreferenceLandsberg J. J. & Waring R. H. ( 1997 ) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. Forest Ecology and Management 95, 209 – 228.en_US
dc.identifier.citedreferenceLaw B. E., Ryan M. G., Anthoni P. M. ( 1999 ) Seasonal and annual respiration of a ponderosa pine ecosystem. Global Change Biology 5, 169 – 182.en_US
dc.identifier.citedreferenceLeuning R. ( 2000 ) Estimation of scalar source/sink distributions in plant canopies using Lagrangian dispersion analysis: corrections for atmospheric stability and comparison with a multilayer canopy model. Boundary Layer Meteorology 96, 293 – 314.en_US
dc.identifier.citedreferenceLeuning R., Denmead O. T., Lang A. R. G. ( 1982 ) Effects of heat and water vapor transport on eddy covariance measurement of CO 2 fluxes. Boundary Layer Meteorology 23, 209 – 222.en_US
dc.identifier.citedreferenceLeuning R., Kelliher F. M., De Pury D. G. G., Schulze E. -D. ( 1995 ) Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies. Plant, Cell and Environment 18, 1183 – 1200.en_US
dc.identifier.citedreferenceLinder S. ( 1995 ) Foliar analysis for detecting and correcting nutrient imbalances in Norway spruce. Ecological Bulletins 44, 178 – 190.en_US
dc.identifier.citedreferenceLinder S., Benson M. L., Meyers B. J., Raison R. J. ( 1987 ) Canopy dynamics and growth of Pinus radiata. I. Effects of irrigation and fertilization during a drought. Canadian Journal of Forest Research 17, 1157 – 1165.en_US
dc.identifier.citedreferenceMaier C. A. & Kress L. W. ( 2000 ) Soil CO 2 evolution and root respiration in 11-year-old loblolly pine ( Pinus taeda ) plantations as affected by moisture and nutrient availability. Canadian Journal of Forest Research 30, 347 – 359.en_US
dc.identifier.citedreferenceMaier C. A., Zarnoch S. J., Dougherty P. M. ( 1998 ) Effects of temperature and tissue nitrogen of dormant season stem and branch maintenance respiration in a young loblolly pine ( Pinus taeda ) plantation. Tree Physiology 18, 11 – 20.en_US
dc.identifier.citedreferenceMÄkelÄ A. & Valentine H. T. ( 2001 ) The ratio of NPP to GPP: evidence of change over the course of stand development. Tree Physiology 21, 1015 – 1030.en_US
dc.identifier.citedreferenceMcKeand S. E., Grissom J. E., Handest J. A., O'Malley D. M., Allen H. L. ( 2000 ) Responsiveness of diverse provenances of loblolly pine to fertilization – age 4 results. Journal of Sustainable Forest 10, 87 – 94.en_US
dc.identifier.citedreferenceMedlyn B. E. & Dewar R. C. ( 1999 ) Comment on the article by R. H. Waring, J. J. Landsberg and M. Williams relating net primary production to gross primary production. Tree Physiology 19, 137 – 138.en_US
dc.identifier.citedreferenceMiller H. G. ( 1984 ) Dynamics of nitrogen cycling in plantation ecosystems. In Nutrition of Plantation Forests (eds G. D. Bowen & E. K. S.. Nambiar ), pp. 53 – 78. Academic Press, London, UK.en_US
dc.identifier.citedreferenceMonteith J. L. & Unsworth M. H. ( 1990 ) Principles of Environmental Physics pp. 58 – 259. Edward Arnold, London, UK.en_US
dc.identifier.citedreferenceMurthy R., Dougherty P. M., Zarnoch S. J., Allen H. L. ( 1996 ) Effects of carbon dioxide, fertilization, and irrigation on photosynthetic capacity of loblolly pine trees. Tree Physiology 16, 537 – 546.en_US
dc.identifier.citedreferenceNorman J. M. & Welles J. ( 1983 ) Radiative transfer in an array of canopies. Agronomy Journal 75, 481 – 488.en_US
dc.identifier.citedreferenceOren R., Ellsworth D. E., Johnsen K. H., et al. ( 2001 ) Soil fertility limits carbon sequestration by forest ecosystems in a CO 2 -enriched atmosphere. Nature 411, 469 – 472.en_US
dc.identifier.citedreferenceOren R., Sperry J. S., Katul G. G., Pataki D. E., Ewers B. E., Phillips N., SchÄfer K. ( 1999 ) Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell and Environment 22, 1515 – 1526.en_US
dc.identifier.citedreferencePataki D. E., Oren R., Phillips N. ( 1998 ) Responses of sap flux and stomatal conductance of Pinus taeda L. trees to stepwise reductions in leaf area. Journal of Experimental Botany 49, 871 – 878.en_US
dc.identifier.citedreferencePritchett W. L. & Smith W. H. ( 1975 ) Forest fertilization in the U.S. southeast. In Forest Soils and Forest Land Management (eds B. Bernier & C. H. Winget ), pp. 467 – 476. Laval University Press, Quebec, Canada.en_US
dc.identifier.citedreferenceRaupach M. R. ( 1988 ) Canopy transport processes. In Flow and Transport in the Natural Environment Advances and Applications (eds W. L. Steffen & O. T. Denmead ), pp. 95 – 127. Springer-Verlag, Berlin, Germany.en_US
dc.identifier.citedreferenceRaupach M. R. ( 1989a ) A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Quarterly Journal of Royal Meteorological Society 115, 609 – 632.en_US
dc.identifier.citedreferenceRaupach M. R. ( 1989b ) Applying Lagrangian fluid mechanics to infer   scalar   source   distributions   from   concentration   profiles in  plant  canopies.   Agricultural  and  Forest  Meteorology   47, 85 – 108.en_US
dc.identifier.citedreferenceRaupach M. R. & Shaw R. H. ( 1982 ) Averaging procedures for flow within vegetation canopies. Boundary Layer Meteorology 22, 79 – 90.en_US
dc.identifier.citedreferenceReynolds H. L. & D'Antonio C. ( 1996 ) The ecological significance of plasticity in root weight ratio in response to nitrogen: opinion. Plant and Soil 185, 75 – 97.en_US
dc.identifier.citedreferenceRuimy A., Jarvis P. G., Baldocchi D. D., Saugier B. ( 1995 ) CO 2 fluxes over plant canopies and solar radiation: a review. Advances in Ecological Research 26, 1 – 28.en_US
dc.identifier.citedreferenceRunning S. W. & Coughlan J. C. ( 1988 ) A general model of forest ecosystem processes for regional applications, I. Hydrologic balance, canopy gas exchange and primary production processes. Ecological Modelling 42, 125 – 154.en_US
dc.identifier.citedreferenceRyan M. G. ( 1991 ) A simple method for estimating gross carbon budgets for vegetation in forest ecosystems. Tree Physiology 9, 255 – 266.en_US
dc.identifier.citedreferenceRyan M. G., Hubbard R. M., Pongracic S., Raison R. J., McMurtrie R. E. ( 1996 ) Foliage, fine-root, woody-tissue and stand respiration in Pinus radiata in relation to nitrogen status. Tree Physiology 16, 333 – 343.en_US
dc.identifier.citedreferenceRyan M., Linder S., Vose J., Hubbard M. ( 1994 ) Dark respiration of pines. In: Environmental Constraints on the Structure and Productivity of Pine Forest Ecosystems: a Comparative Analysis (eds H. L. Gholz, S. Linder & R. E. McMurtrie ). Ecological Bulletins 43, 50 – 63.en_US
dc.identifier.citedreferenceSampson D. A. & Allen H. L. ( 1998 ) Light attenuation in a 14-year-old loblolly pine stand as influenced by fertilization and irrigation. Trees – Structure and Function 13, 80 – 87.en_US
dc.identifier.citedreferenceSamuelson L., Stokes T., Cooksey T., McLemore P. ( 2001 ) Production efficiency of loblolly pine and sweetgum in response to four years of intensive management. Tree Physiology 21, 363 – 376.en_US
dc.identifier.citedreferenceSantantonio D. ( 1989 ) Dry-matter partitioning and fine-root production in forests – new approaches to a difficult problem. In Biomass Production by Fast-Growing Trees (eds J. S. Pereira & J. J. Landsberg ), pp. 57 – 72. Kluwer Academic Publishers, Dordrecht, The Netherlands.en_US
dc.identifier.citedreferenceSchÄfer K. V. R., Oren R., Tenhunen J. D. ( 2000 ) The effect of tree height on crown-level stomatal conductance. Plant, Cell Environment 23, 365 – 377.en_US
dc.identifier.citedreferenceSchimel D. S. ( 1995 ) Terrestrial ecosystems and the carbon-cycle. Global Change Biology 1, 77 – 91.en_US
dc.identifier.citedreferenceSchuepp P. H. ( 1993 ) Tansley review, 59: leaf boundary layers. New Phytologist 125, 477 – 507.en_US
dc.identifier.citedreferenceSchultz R. P. ( 1997 ) The Ecology and Culture of Loblolly Pine (Pinus taeda L. ). USDA Agriculture Handbook 713. US Government Printing Office, Washington, DC, USA.en_US
dc.identifier.citedreferenceSchulze E. D., Wirth C., Heimann M. ( 2000 ) Managing forests after Kyoto. Science 289, 2058 – 2059.en_US
dc.identifier.citedreferenceSiqueira M., Lai C. -T., Katul G. G. ( 2000 ) Estimating scalar sources, sinks, and fluxes in a forest canopy using Lagrangian, Eulerian, and hybrid inverse models, Journal of Geophysical Research-Atmosphere 105, 29475 – 29488.en_US
dc.identifier.citedreferenceTans P. P. & White J. W. C. ( 1998 ) The global carbon cycle balance, with a little help from the plants. Science 281, 183 – 184.en_US
dc.identifier.citedreferenceTeskey R. O., Gholz H. L., Cropper J. R. W. P. ( 1994 ) Influence of climate and fertilization on net photosynthesis of mature slash pine. Tree Physiology 14, 1215 – 1227.en_US
dc.identifier.citedreferenceTracy C. R., van Berkum F. H., Tsuji J. S., Stevenson R. D., Nelson J. A., Barnes B. M., Huey R. B. ( 1984 ) Errors resulting from linear approximations in energy balance equations. Journal of Thermal Biology 9, 261 – 264.en_US
dc.identifier.citedreferenceVan der Werf A. & Nagel O. W. ( 1996 ) Carbon allocation to shoots and roots in relation to nitrogen supply is mediated by cytokinins and sucrose: opinion. Plant and Soil 185, 21 – 32.en_US
dc.identifier.citedreferenceVitousek P. M. & Howarth R. W. ( 1991 ) Nitrogen limitation on land and in the sea – how can it occur. Biogeochemistry 13, 87 – 115.en_US
dc.identifier.citedreferenceVose J. M. & Allen H. L. ( 1988 ) Leaf area, stemwood growth, ad nutrition relationships in Loblolly pine. Forest Science 34, 547 – 563.en_US
dc.identifier.citedreferenceWang Y. P. & Jarvis P. G. ( 1990 ) Description and validation of an array model – MAESTRO. Agricultural and Forest Meteorology 51, 257 – 280.en_US
dc.identifier.citedreferenceWaring R. H. & Schlesinger W. H. ( 1985 ) Forest Ecosystem: Concepts and Management, pp. 197 – 203. Academic Press Inc, Orlando, FL, USA.en_US
dc.identifier.citedreferenceWaring R. H., Landsberg J. J., Williams M. ( 1998 ) Net primary production of forests: a constant fraction of gross primary production? Tree Physiology 18, 129 – 134.en_US
dc.identifier.citedreferenceWarland J. S. & Thurtell G. W. ( 2000 ) A Lagrangian solution to the relationship between a distributed source and concentration profile. Boundary Layer Meteorology 96, 453 – 471.en_US
dc.identifier.citedreferenceWebb E. K., Pearman G. I., Leuning R. ( 1980 ) Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of Royal Meteorological Society 106, 85 – 100.en_US
dc.identifier.citedreferenceWilliams M., Rastetter E. B., Fernades D. N., et al. ( 1996 ) Modeling the soil-plant-atmosphere continuum in a Quercus-Acer stand at Harvard Forest: the regulation of stomatal conductance by light, nitrogen and soil/plant hydraulic properties. Plant, Cell, and Environment 19, 911 – 927.en_US
dc.identifier.citedreferenceWilliams M., Rastetter E. B., Fernandes D. N., Goulden M. L., Shaver G. R., Johnson L. C. ( 1997 ) Predicting gross primary productivity in terrestrial ecosystems. Ecological Applications 7, 882 – 894.en_US
dc.identifier.citedreferenceWilson N. R. & Shaw R. H. ( 1977 ) A higher order closure model for canopy flow. Journal of Applied Meteorology 16, 1198 – 1205.en_US
dc.identifier.citedreferenceWullschleger S. D. ( 1993 ) Biochemical limitations to carbon assimilation in C3 plants – a retrospective analysis of the A/C i curves from 109 species. Journal of Experimental Botany 44, 907 – 920.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.