Show simple item record

Differential Responsivity of the Hypothalamic-Pituitary-Adrenal Axis to Glucocorticoid Negative-Feedback and Corticotropin Releasing Hormone in Rats Undergoing Morphine Withdrawal: Possible Mechanisms Involved in Facilitated and Attenuated Stress Responses

dc.contributor.authorHoushyar, Hanien_US
dc.contributor.authorGaligniana, M. D.en_US
dc.contributor.authorPratt, William B.en_US
dc.contributor.authorWoods, James H.en_US
dc.date.accessioned2010-06-01T20:37:15Z
dc.date.available2010-06-01T20:37:15Z
dc.date.issued2001-10en_US
dc.identifier.citationHoushyar, H.; Galigniana, M. D.; Pratt, W. B.; Woods, J. H. (2001). "Differential Responsivity of the Hypothalamic-Pituitary-Adrenal Axis to Glucocorticoid Negative-Feedback and Corticotropin Releasing Hormone in Rats Undergoing Morphine Withdrawal: Possible Mechanisms Involved in Facilitated and Attenuated Stress Responses." Journal of Neuroendocrinology 13(10): 875-886. <http://hdl.handle.net/2027.42/73727>en_US
dc.identifier.issn0953-8194en_US
dc.identifier.issn1365-2826en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73727
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=11679056&dopt=citationen_US
dc.description.abstractChronic morphine treatment produces profound and long-lasting changes in the pituitary-adrenal responses to stressful stimuli. The purpose of the present study was to explore the mechanisms involved in these altered stress responses. Chronic morphine administration increased basal plasma concentrations of corticosterone and adrenocorticotropic hormone (ACTH), which peaked at 36 h after the final morphine injection and returned to normal levels within 84-h. Whole brain glucocorticoid receptor protein expression was reduced (approximately 70%) in morphine-treated rats 4-h after the final morphine injection and these levels recovered within 16-h. Twelve hours following morphine withdrawal, rats displayed normal ACTH, but potentiated and prolonged corticosterone responses to restraint stress. Both the ACTH and corticosterone responses to restraint in acutely withdrawn rats were insensitive to dexamethasone. Furthermore, acutely withdrawn rats displayed reduced ACTH but prolonged corticosterone responses to peripheral corticotropin releasing hormone (CRH) administration. These findings suggest that the normal ACTH and enhanced corticosterone responses to stress in acutely withdrawn rats involved decreased sensitivity of negative-feedback systems to glucocorticoids, reduced pituitary responsivity to CRH, and enhanced sensitivity of the adrenals to ACTH. Eight days following morphine withdrawal, rats displayed dramatically reduced ACTH, but normal corticosterone responses to restraint stress. These rats displayed enhanced sensitivity to dexamethasone and normal pituitary-adrenal responses to CRH. These data suggest that the reduced ACTH responses to stress in 8-day withdrawal rats involved increased sensitivity of negative-feedback systems to glucocorticoids as well as reduced CRH and/or AVP function in response to stress. Taken together, the results of this study illustrate some of the mechanisms mediating altered stress responsivity in rats that have received chronic morphine treatment.en_US
dc.format.extent255061 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science, Ltden_US
dc.rightsBritish Neuroendocrine Groupen_US
dc.subject.otherRestraint Stressen_US
dc.subject.otherMorphineen_US
dc.subject.otherDexamethasoneen_US
dc.subject.otherCRHen_US
dc.subject.otherGlucocorticoid Receptoren_US
dc.titleDifferential Responsivity of the Hypothalamic-Pituitary-Adrenal Axis to Glucocorticoid Negative-Feedback and Corticotropin Releasing Hormone in Rats Undergoing Morphine Withdrawal: Possible Mechanisms Involved in Facilitated and Attenuated Stress Responsesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum† Psychology, University of Michigan, Ann Arbor, MI, USA.en_US
dc.contributor.affiliationother* Pharmacology anden_US
dc.identifier.pmid11679056en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73727/1/j.1365-2826.2001.00714.x.pdf
dc.identifier.doi10.1046/j.1365-2826.2001.00714.xen_US
dc.identifier.sourceJournal of Neuroendocrinologyen_US
dc.identifier.citedreferenceKosten TR, Rounsaville BJ, Klever HD. A 2.5-year follow-up of depression, life crises, and treatment effects on abstinence among opioid addicts. Arch Gen Psychiatry 1986; 43: 733 – 739.en_US
dc.identifier.citedreferenceO'Doherty F. Is drug use a response to stress? Drug Alcohol Depend 1991; 29: 97 – 106.en_US
dc.identifier.citedreferenceChildress AR, Ehrman R, McLellan AT, MacRae J, Natale M, O'Brien CO. Can induced moods trigger drug-related responses in opiate abuse patients? J Subs Abuse Treat 1994; 11: 17 – 23.en_US
dc.identifier.citedreferenceKreek MJ & Koob GF. Drug dependence: stress and dysregulation of brain reward pathways. Drug Alcohol Depend 1998; 51: 23 – 47.en_US
dc.identifier.citedreferenceKoob GF & Heinrichs SC. A role for corticotropin releasing factor and urocortin in behavioral responses to stressors. Brain Res 1999; 848: 141 – 152.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Differences in hypothalamo-pituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology 1984; 38: 411 – 417.en_US
dc.identifier.citedreferenceSuemara S, Dallman MF, Darlington DN, Cascio CS, Shinsako J. Role of alpha-adrenergic mechanism in effects of morphine on the hypothalamo-pituitary-adrenocortical and cardiovascular systems in the rat. Neuroendocrinology 1989; 49: 181 – 190.en_US
dc.identifier.citedreferenceIgnar DM & Kuhn CM. Effects of specific mu and kappa opiate tolerance and abstinence on hypothalamo-pituitary-adrenal axis secretion in the rat. J Pharmacol Exp Ther 1990; 255: 1287 – 1295.en_US
dc.identifier.citedreferenceNock B, Wich M, Cicero TJ. Chronic exposure to morphine increases corticosteroid-binding globulin. J Pharmacol Exp Ther 1997; 282: 1262 – 1268.en_US
dc.identifier.citedreferenceZhou Y, Spangler R, Mggos CE, Wang XM, Han JS, Ho MJ. Hypothalamic-pituitary-adrenal activity and pro-opiomelanocortin mRNA levels in the hypothalamus and pituitary of the rat are differentially modulated by acute intermittent morphine with or without water restriction stress. J Endocrinol 1999; 163: 261 – 267.en_US
dc.identifier.citedreferenceShaham Y, Erb S, Leung S, Buczek Y, Stewart J. CP-154,526, a selective, non-peptide antagonist of the corticotropin-releasing factor1 receptor attenuates stress-induced relapse to drug seeking in cocaine- and heroin-trained rats. Psychopharmacology 1998; 137: 184 – 190.en_US
dc.identifier.citedreferencePiazza PV & LeMoal M. The role of stress in drug self-administration. Trends Pharmacol Sci 1998; 19: 67 – 74.en_US
dc.identifier.citedreferenceLotti VJ, Kokka N, George R. Pituitary-adrenal activation following intrahypothalamic microinjection of morphine. Neuroendocrinology 1969; 4: 326 – 332.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Effects of naloxone on hypothalamo-pituitary-adrenocortical activity in the rat. Neuroendocrinology 1986; 42: 421 – 426.en_US
dc.identifier.citedreferenceBuckingham JC & Cooper TA. Interrelationships of opioidergic and adrenergic mechanisms controlling the secretion of cortictropin releasing factor in the rat. Neuroendocrinology 1987; 46: 199 – 206.en_US
dc.identifier.citedreferenceDallman MF, Akana SF, Cascio CS, Darlington DN, Jacobson L, Levin N. Regulation of ACTH secretion: variations on a theme of B. Recent Prog Horm Res 1987; 43: 113 – 172.en_US
dc.identifier.citedreferenceGuaza C, Torrellas A, Borrell J, Borrell S. Effects of morphine upon the pituitary-adrenal system and adrenal catecholamines: a comparative study in cats and rats. Pharmacol Biochem Behav 1979; 11: 57 – 63.en_US
dc.identifier.citedreferenceArmario A, Lopzez-Calderon A, Jolin T, Balasch J. Response of anterior pituitary hormones to chronic stress. The specificity of adaptation. Neurosci Behav Rev 1986; 10: 245 – 250.en_US
dc.identifier.citedreferencePitman DL, Ottenweller JE, Natelson BH. Plasma corticosterone levels during repeated presentation of two intensities of restraint stress: chronic stress and habituation. Physiol Behav 1988; 43: 47 – 55.en_US
dc.identifier.citedreferenceHoushyar H, Cooper ZD, Woods JH. Paradoxical effects of chronic morphine treatment on the temperature and pituitary-adrenal responses to acute restraint stress: a chronic stress paradigm J Neuroendocrinol 2001; 13: 862 – 874.en_US
dc.identifier.citedreferenceDallman MF, Akana SF, Scribner KA, Bradbury MJ, Walker CD, Strack AM, Cascio CS. Stress, feedback and facilitation in the hypothalamo-pituitary-adrenal axis. J Neuroendocrinol 1991; 4: 517 – 526.en_US
dc.identifier.citedreferenceVernikos J, Dallman MF, Bonner C, Katzen A, Shinsako J. Pituitary-adrenal function in rats chronically exposed to cold. Endocrinology 1982; 110: 413 – 420.en_US
dc.identifier.citedreferenceBhatnagar S, Mitchell JB, Betito K, Boksa P, Meaney MJ. Effects of chronic intermittent cold stress on pituitary adrenocortical and sympathetic adrenomedullary functioning. Physiol Behav 1995; 57: 633 – 639.en_US
dc.identifier.citedreferenceBhatnagar S & Dallman M. Neuroanatomical basis for facilitation of hypothalamic-pituitary-adrenal responses to a novel stressor after chronic stress. Neuroscience 1998; 84: 1025 – 1039.en_US
dc.identifier.citedreferenceAguilera G. Regulation of pituitary ACTH secretion during chronic stress. Front Neuroendocrinol 1994; 15: 321 – 350.en_US
dc.identifier.citedreferenceYoung EA & Akil H. Corticotropin-releasing factor stimulation of adrenocorticotropin and beta-endorphin release: effects of acute and chronic stress. Endocrinology 1985; 117: 23 – 30.en_US
dc.identifier.citedreferenceHauger RL, Lorang M, Irwin M, Aguilera G. CRF receptor regulation and sensitization of ACTH response to acute ether stress during chronic intermittent immobilization stress. Brain Res 1990; 532: 34 – 40.en_US
dc.identifier.citedreferenceAnderson SM, Kant GJ, De Souza EB. Effects of chronic stress on anterior pituitary and brain corticotropin-releasing factor receptors. Pharmacol Biochem Behav 1993; 44: 755 – 761.en_US
dc.identifier.citedreferenceMarti O, Gavalda A, Gomez F, Armario A. Direct evidence for chronic stress-induced facilitation of adrenocorticotropin response to a novel acute stressor. Neuroendocrinology 1994; 60: 1 – 7.en_US
dc.identifier.citedreferenceSapolsky RM, Krey LC, McEwen BS. Stress down-regulated corticosterone receptors in a site-specific manner in the brain. Endocrinology 1984; 114: 287 – 292.en_US
dc.identifier.citedreferenceYoung EA, Akana S, Dallman MF. Decreased sensitivity to glucocorticoid fast feedback in chronically stressed rats. Neuroendocrinology 1990; 51: 536 – 642.en_US
dc.identifier.citedreferenceScribner KA, Walker CD, Cascio CS, Dallman MF. Chronic streptozotocin diabetes in rats facilitates the acute stress response without altering pituitary or adrenal responsiveness to secretagogues. Endocrinology 1991; 129: 99 – 108.en_US
dc.identifier.citedreferenceMakino S, Smith MA, Gold PW. Increased expression of corticotropin-releasing hormone and vasopressin messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus during repeated stress: association with reduction in glucocorticoid receptor mRNA levels. Endocrinology 1995; 136: 3299 – 3309.en_US
dc.identifier.citedreferenceMeaney MJ, Bhatnagar S, Diorio J, Laroque S, Francis D, O'Donnell D, Shanks N, Sharma S, Smythe J, Viau V. Molecular basis of the development of individual differences in the hypothalamic-pituitary-adrenal stress response. Cell Mol Neurobiol 1993; 13: 321 – 347.en_US
dc.identifier.citedreferenceAlbeck DS, McKittrick CR, Blanchard DC, Blanchard RJ, Nikulina J, McEwen BS, Sakai RR. Chronic social stress alters levels of corticotropin-releasing factor and arginine vasopressin mRNA in rat brain. J Neurosci 1997; 17: 4895 – 4903.en_US
dc.identifier.citedreferenceBlanchard RJ, Nikylina JN, Sakai RR, Mckittrick C, McEwen B, Blanchard C. Behavioral and endocrine changes following chronic predatory stress. Physiol Behav 1998; 63: 561 – 569.en_US
dc.identifier.citedreferenceMar Sanchez M, Aguado F, Sanchez-Toscano F, Saphier D. Neuroendocrine and immunohistochemical demonstrations of decreased hypothalamo-pituitary-adrenal axis responsiveness to restraint stress after long-term social isolation. Endocrinology 1998; 139: 579 – 587.en_US
dc.identifier.citedreferencePlotsky PM & Meaney MJ. Early, postnatal experience alters hypothalamic corticotropin-releasing factor (CRF) mRNA, median eminence CRF content and stress-induced release in adult rats. Mol Brain Res 1993; 18: 195 – 200.en_US
dc.identifier.citedreferenceHoltzman SG & Villarreal JE. Morphine dependence and body temperature in rhesus monkeys. J Pharmacol Exp Ther 1969; 166: 125 – 133.en_US
dc.identifier.citedreferenceBudziszewska BB, Jaworska L, Lason W. Repeated morphine administration down-regulates glucocorticoid, but not mineralocorticoid, receptors in the rat hippocampus. Psychoneuroendocrinology 1995; 20: 75 – 81.en_US
dc.identifier.citedreferenceAkana SF & Dallman MF. Feedback and facilitation in the adrenocortical system: unmasking facilitation by partial inhibition of the glucocorticoid response to prior stress. Endocrinology 1992; 131: 57 – 68.en_US
dc.identifier.citedreferenceGarcia A, Marti O, Valles A, Dal-Zotto S, Armario A. Recovery of the hypothalamic pituitary-adrenal response to stress. Neuroendocrinology 2000; 72: 114 – 125.en_US
dc.identifier.citedreferenceDeFranco DB, Qi M, Borror KC, Garabedian MJ, Brautigan DL. Protein phosphatase types 1 and/or 2A regulate nucleocytoplasmic shuttling of glucocorticoid receptors. Mol Endocrinol 1991; 5: 1215 – 1228.en_US
dc.identifier.citedreferenceGaligniana MD, Vicent GP, Piwien-Pilipuk G, Burton G, Lantos CP. Mechanism of action of the potent sodium-retaining steroid 11,19-oxidoprogesterone. Mol Pharmacol 2000; 58: 58 – 70.en_US
dc.identifier.citedreferenceTallarida RJ & Murray RB. Manual for Pharmacologic Calculations with Computer Programs. New York: Springer-Verlag, 1987.en_US
dc.identifier.citedreferenceMeisfeld R, Rusconi S, Godowski PJ, Maler BA, Okret S, Wikstrom AC, Gustafsson JA, Yamamoto KR. Genetic complementation of a glucocorticoid receptor deficiency by expression of cloned receptor cDNA. Cell 1986; 46: 389 – 399.en_US
dc.identifier.citedreferenceKeller-Wood ME & Dallman MF. Corticosteroid inhibition of ACTH secretion. Endocrinol Rev 1984; 5: 1 – 24.en_US
dc.identifier.citedreferenceReul JMHM & deKloet ER. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 1985; 117: 2505 – 2511.en_US
dc.identifier.citedreferenceSapolsky RM, Krey LC, McEwen BS. Down-regulation of neural corticosterone receptors by corticosterone and dexamethasone. Brain Res 1985; 339: 161 – 165.en_US
dc.identifier.citedreferenceWalker C-D, Sapolsky RM, Meaney MJ, Vale WW, Rivier CL. Increased pituitary sensitivity to glucocorticoid feedback during the stress nonresponsive period in the neonatal rat. Endocrinology 1986; 119: 1816 – 1821.en_US
dc.identifier.citedreferenceMeaney MJ, Aitken DH, Viau V, Sharma S, Sarrieau A. Neonatal handling alters adrenocortical negative feedback sensitivity and hippocampal type II glucocorticoid receptor binding in the rat. Neuroendocrinology 1989; 50: 597 – 604.en_US
dc.identifier.citedreferenceGÓmez F, De Kloet ER, Armario A. Glucocorticoid negative feedback on the HPA axis in five inbred rat strains. Am J Physiol 1998; 274: R420 – R427.en_US
dc.identifier.citedreferenceBuwalda B, de Boer SF, Schmidt ED, Felszeghy K, Nyakas C, Sgoigo A, Van der Vegt BJ, Tilders FJH, Bohus B, Koolhaas JM. Long-lasting deficient dexamethasone suppression of hypothalamic-pituitary-adrenocortical activation following peripheral CRF challenge in socially defeated rats. J Neuroendocrinol 1999; 11: 513 – 520.en_US
dc.identifier.citedreferencedeKloet R, Wallach G, McEwen BS. Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology 1975; 96: 598 – 605.en_US
dc.identifier.citedreferenceWynn PC, Harwood JP, Catt KH, Aguilera G. Regulation of corticotropin-releasing factor (CRF) in the rat pituitary-gland: effects of adrenalectomy on CRF receptors and corticotroph responses. Endocrinology 1985; 116: 1653 – 1659.en_US
dc.identifier.citedreferenceIredale PA, Alvaro JD, Lee Y, Terwilliger R, Chen YL, Duman RS. Role of corticotropin-releasing factor receptor-1 in opiate withdrawal. J Neurochem 2000; 74: 199 – 208.en_US
dc.identifier.citedreferenceLightman S & Young WS. Corticotropin-releasing factor, vasopressin and pro-opioimelanocortin mRNA responses to stress and opiates in the rat. J Physiol 1988; 403: 511 – 523.en_US
dc.identifier.citedreferenceMilanes MV, Laorden ML, Chapleur-Chateu M, Burlet A. Differential regulation of corticotropin-releasing factor an vasopressin in discrete brain regions after morphine administration: correlations with hypothalamic noradrenergic activity and pituitary-adrenal responses. Naunyn-Schmiedeberg's Arch Pharmacol 1997; 356: 603 – 610.en_US
dc.identifier.citedreferenceMilanes MV, Laorden ML, Chapleur-Chateau M, Burlet A. Alterations in corticotropin-releasing factor and vasopressin content in rat brain during morphine withdrawal: correlation with hypothalamic noradrenergic activity and pituitary-adrenal response. J Pharmacol Exp Ther 1998; 285: 700 – 706.en_US
dc.identifier.citedreferenceFuertes G, Milanes MV, Rodriguez-Gago M, Mrin MT, Laorden ML. Changes in hypothalamic paraventricular nucleus catecholaminergic activity after acute and chronic morphine administration. Eur J Pharmacol 2000; 388: 49 – 56.en_US
dc.identifier.citedreferenceFuertes G, Laorden ML, Milanes MV. Noradrenergic and dopaminergic activity in the hypothalamic paraventricular nucleus after naloxone-induced morphine withdrawal. Neuroendocrinology 2000; 71: 60 – 67.en_US
dc.identifier.citedreferenceLaorden ML, Fuertes G, Gonzalez-Cuello A, Milanes MV. Changes in catecholaminergic pathways innervating paraventricular nucleus and pituitary-adrenal axis response during morphine dependence: implication of α1- and α2-adrenoceptors. J Pharmacol Exp Ther 2000; 293: 578 – 584.en_US
dc.identifier.citedreferenceHolsboer F. The corticosteroid receptor hypothesis of depression. Neuropsychopharmacology 2000; 23: 477 – 501.en_US
dc.identifier.citedreferenceYehuda R, Southwick SM, Krystal JH, Bremner D, Charney DS, Mason JW. Enhanced suppression of cortisol following dexamethasone administration in posttraumatic stress disorder. Am J Phychiatry 1993; 150: 83 – 86.en_US
dc.identifier.citedreferenceStein MB, Yehuda R, Koverola C, Hanna C. Enhanced dexamethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry 1997; 42: 680 – 686.en_US
dc.identifier.citedreferenceMarkou A, Kosten TR, Koob GF. Neurobiological similarities in depression and drug dependence: a self-medication hypothesis. Neuropsychopharmaoclogy 1998; 18: 135 – 174.en_US
dc.identifier.citedreferenceStewart SH, Pihl RO, Conrod PJ, Dongier M. Functional associations among trauma, PTSD and substance-related disorders. Addict Behav 1998; 23: 797 – 812.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.