Show simple item record

Taking species abundance distributions beyond individuals

dc.contributor.authorMorlon, Hélèneen_US
dc.contributor.authorWhite, Ethan P.en_US
dc.contributor.authorEtienne, Rampal S.en_US
dc.contributor.authorGreen, Jessica L.en_US
dc.contributor.authorOstling, Annetteen_US
dc.contributor.authorAlonso, Daviden_US
dc.contributor.authorEnquist, Brian J.en_US
dc.contributor.authorHe, Fangliangen_US
dc.contributor.authorHurlbert, Allen H.en_US
dc.contributor.authorMagurran, Anne E.en_US
dc.contributor.authorMaurer, Brian A.en_US
dc.contributor.authorMcGill, Brian J.en_US
dc.contributor.authorOlff, Hanen_US
dc.contributor.authorStorch, Daviden_US
dc.contributor.authorZillio, Tommasoen_US
dc.date.accessioned2010-06-01T20:37:48Z
dc.date.available2010-06-01T20:37:48Z
dc.date.issued2009-06en_US
dc.identifier.citationMorlon, HÉlÈne; White, Ethan P.; Etienne, Rampal S.; Green, Jessica L.; Ostling, Annette; Alonso, David; Enquist, Brian J.; He, Fangliang; Hurlbert, Allen; Magurran, Anne E.; Maurer, Brian A.; McGill, Brian J.; Olff, Han; Storch, David; Zillio, Tommaso (2009). "Taking species abundance distributions beyond individuals." Ecology Letters 12(6): 488-501. <http://hdl.handle.net/2027.42/73736>en_US
dc.identifier.issn1461-023Xen_US
dc.identifier.issn1461-0248en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73736
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19490012&dopt=citationen_US
dc.format.extent1142705 bytes
dc.format.extent549252 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 Blackwell Publishing Ltd/CNRSen_US
dc.subject.otherSpecies Abundance Distributionen_US
dc.subject.otherBody-sizeen_US
dc.subject.otherSize Distributionen_US
dc.subject.otherSize–Density Relationshipen_US
dc.subject.otherBiomassen_US
dc.subject.otherEnergy Useen_US
dc.subject.otherSize–Energy Relationshipen_US
dc.subject.otherResource Partitioningen_US
dc.subject.otherMacroecologyen_US
dc.subject.otherMetabolic Theoryen_US
dc.titleTaking species abundance distributions beyond individualsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationumDepartment of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USAen_US
dc.contributor.affiliationotherCenter for Ecology and Evolutionary Biology, University of Oregon, Eugene, OR, USAen_US
dc.contributor.affiliationotherDepartment of Biology and the Ecology Center, Utah State University, Logan, UT, USAen_US
dc.contributor.affiliationotherCommunity and Conservation Ecology Group, University of Groningen, Haren, Netherlandsen_US
dc.contributor.affiliationotherThe Santa Fe Institute, Santa Fe, NMen_US
dc.contributor.affiliationotherDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USAen_US
dc.contributor.affiliationotherCenter for Applied Biodiversity, Science Conservation International, Arlington, VAen_US
dc.contributor.affiliationotherDepartment of Renewable Resources, University of Alberta, Edmonton, AB, Canadaen_US
dc.contributor.affiliationotherDepartment of Biology, University of North Carolina, Chapel Hill, NC, USAen_US
dc.contributor.affiliationotherSchool of Biology, University of St Andrews, St Andrews, UKen_US
dc.contributor.affiliationotherSchool of Natural Resources, University of Arizona, Tucson, AZ, USAen_US
dc.contributor.affiliationotherCenter for Theoretical Study, Charles University of Academy Sciences of the CR, Praha, Czech Republicen_US
dc.contributor.affiliationotherDepartment of Ecology, Faculty of Science, Charles University, Praha, Czech Republicen_US
dc.identifier.pmid19490012en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73736/1/ELE_1318_sm_SA1-4_FigS1-3.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73736/2/j.1461-0248.2009.01318.x.pdf
dc.identifier.doi10.1111/j.1461-0248.2009.01318.xen_US
dc.identifier.sourceEcology Lettersen_US
dc.identifier.citedreferenceAllen, C., Garmestani, A., Havlicek, T., Marquet, P., Peterson, G., Restrepo, C. et al. ( 2006 ). Patterns in body mass distributions: sifting among alternative hypotheses. Ecol. Lett., 9, 630 – 643.en_US
dc.identifier.citedreferenceAlonso, D., Ostling, A. & Etienne, R.S. ( 2008 ). The implicit assumption of symmetry and the species abundance distribution. Ecol. Lett., 11, 93 – 105.en_US
dc.identifier.citedreferenceBielby, J., Mace, G., Bininda-Emonds, O., Cardillo, M., Gittleman, J., Jones, H. et al. ( 2007 ). The fast-slow continuum in mammalian life history: an empirical reevaluation. Am. Nat., 169, 748 – 757.en_US
dc.identifier.citedreferenceBlackburn, T.M. & Gaston, K.J. ( 1997 ). A critical assessment of the form of the interspecific relationship between abundance and body size in animals. J. Anim. Ecol., 66, 233 – 249.en_US
dc.identifier.citedreferenceBrown, S. ( 1997 ). Estimating Biomass and Biomass Change of Tropical Forests: a Primer. UNFAO Forestry Paper 134. Food and Agricultural Organization, Rome.en_US
dc.identifier.citedreferenceBrown, J.H. ( 1998 ). The Desert Granivory Experiments at Portal. Oxford University Press, New York.en_US
dc.identifier.citedreferenceBrown, J.H. & Maurer, B.A. ( 1986 ). Body size, ecological dominance, and cope’s rule. Nature, 324, 248 – 250.en_US
dc.identifier.citedreferenceBrown, J.H. & Maurer, B.A. ( 1989 ). Macroecology: the division of food and space among species on continents. Science, 243, 1145 – 1150.en_US
dc.identifier.citedreferenceBrown, J. & Nicoletto, P. ( 1991 ). Spatial scaling of species composition: body masses of North American land mammals. Am. Nat., 138, 1478.en_US
dc.identifier.citedreferenceCaswell, H. ( 1976 ). Community structure: a neutral model analysis. Ecol. Monogr., 46, 327 – 354.en_US
dc.identifier.citedreferenceChave, J., Condit, R., Lao, S., Caspersen, J.P., Foster, R.B. & Hubbell, S.P. ( 2003 ). Spatial and temporal variation of biomass in a tropical forest: results from a large census plot in Panama. J. Ecol., 91, 240 – 252.en_US
dc.identifier.citedreferenceChave, J., Alonso, D. & Etienne, R.S. ( 2006 ). Theoretical biology – comparing models of species abundance. Nature, 441, E1.en_US
dc.identifier.citedreferenceChiarucci, A., Wilson, J., Anderson, B. & De Dominicis, V. ( 1999 ). Cover versus biomass as an estimate of species abundance: does it make a difference to the conclusions? J. Veg. Sci., 10, 35 – 42.en_US
dc.identifier.citedreferenceClauset, A. & Erwin, D.H. ( 2008 ). The evolution and distribution of species body size. Science, 321, 399 – 401.en_US
dc.identifier.citedreferenceCondit, R. ( 1998 ). Tropical Forest Census Plots. Springer-Verlag and R. G. Landes Company, Berlin and Georgetown.en_US
dc.identifier.citedreferenceConnolly, S.R., Hughes, T.P., Bellwood, D.R. & Karlson, R.H. ( 2005 ). Community structure of corals and reef fishes at multiple scales. Science, 309, 1363 – 1365.en_US
dc.identifier.citedreferenceDamuth, J. ( 1981 ). Population density and body size in mammals. Nature, 290, 699 – 700.en_US
dc.identifier.citedreferenceDornelas, M. & Connolly, S.R. ( 2008 ). Multiple modes in a coral species abundance distribution. Ecol. Lett., 11, 1008 – 1016.en_US
dc.identifier.citedreferenceDunning, J. ( 1993 ). Handbook of Avian Body Masses. CRC Press, Boca Raton.en_US
dc.identifier.citedreferenceErnest, S.K.M., Brown, J.H. & Parmenter, R.R. ( 2000 ). Rodents, plants, and precipitation: Spatial and temporal dynamics of consumers and resources. Oikos, 88, 470 – 482.en_US
dc.identifier.citedreferenceErnest, S.K.M., Valone, T.J. & Brown, J.H. ( 2009 ). Long-term monitoring and experimental manipulation of a Chihuahuan desert ecosystem near Portal AZ. Ecology, in press.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2004 ). How dispersal limitation shapes species body size distributions in local communities. Am. Nat., 163, 69 – 83.en_US
dc.identifier.citedreferenceEtienne, R.S. & Olff, H. ( 2005 ). Confronting different models of community structure to species abundance data: a Bayesian model comparison. Ecol. Lett., 8, 493 – 504.en_US
dc.identifier.citedreferenceFisher, R., Corbet, A. & Williams, C. ( 1943 ). The relation between the number of individuals and the number of species in a random sample from an animal population. J. Anim. Ecol., 12, 42 – 58.en_US
dc.identifier.citedreferenceGillooly, J.F., Brown, J.H., West, G.B., Savage, V.M. & Charnov, E.L. ( 2001 ). Effects of size and temperature on metabolic rate. Science, 293, 2248 – 2251.en_US
dc.identifier.citedreferenceGreen, J.L. & Plotkin, J.B. ( 2007 ). A statistical theory for sampling species abundances. Ecol. Lett., 10, 1037 – 1047.en_US
dc.identifier.citedreferenceGregory, R.D. ( 1994 ). Species abundance patterns of British birds. Proc. R. Soc. Lond. B, 257, 299 – 301.en_US
dc.identifier.citedreferenceHarte, J., Zillio, T., Conlisk, T. & Smith, A.B. ( 2008 ). Maximum entropy and the state-variable approach to macroecology. Ecology, 89, 2700 – 2711.en_US
dc.identifier.citedreferenceHarvey, P.H. ( 1987 ). How species divide resource. Am. Nat., 129, 318 – 320.en_US
dc.identifier.citedreferenceHe, F. & Legendre, P. ( 2002 ). Species diversity patterns derived from species-area models. Ecology, 83, 1185 – 1198.en_US
dc.identifier.citedreferenceHubbell, S. ( 2001 ). The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceHutchinson, G.E. & MacArthur, R.H. ( 1959 ). A theoretical ecological model of size distributions among species of animals. Am. Nat., 93, 117 – 125.en_US
dc.identifier.citedreferenceKleiber, M. ( 1947 ). Body size and metabolic rate. Physiol. Rev., 27, 511 – 541.en_US
dc.identifier.citedreferenceKooijman, S. ( 2000 ). Dynamic Energy and Mass Budgets in Biological Systems. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferenceLatimer, A.M., Silander, J.A. & Cowling, R.M. ( 2005 ). Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science, 309, 1722 – 1725.en_US
dc.identifier.citedreferenceLoehle, C. ( 2006 ). Species abundance distributions result from body size-energetics relationships. Ecology, 87, 2221 – 2226.en_US
dc.identifier.citedreferenceMacArthur, R.H. ( 1957 ). On the relative abundance of bird species. Proc. Natl. Acad. Sci. U.S.A., 43, 293 – 295.en_US
dc.identifier.citedreferenceMacArthur, R.H. ( 1960 ). On the relative abundance of species. Am. Nat., XCIV, 25 – 35.en_US
dc.identifier.citedreferenceMagurran, A.E. ( 2003 ). Explaining the excess of rare species in natural species abundance distributions. Nature, 309, 1363 – 1365.en_US
dc.identifier.citedreferenceMagurran, A.E. & Phillip, D.A.T. ( 2001 ). Implications of species loss in freshwater fish assemblages. Ecography, 24, 645 – 650.en_US
dc.identifier.citedreferenceMarquet, P.A., Navarrete, S.A. & Castilla, J.C. ( 1995 ). Body size, population density, and the energetic equivalence rule. J. Anim. Ecol., 64, 325 – 332.en_US
dc.identifier.citedreferenceMarquet, P.A., Keymer, J. & Cofre, H. ( 2003 ). Breaking the Stick in Space: Of Niche Models, Metacommunities, and Patterns in the Relative Abundance of Species. Blackwell, Oxford.en_US
dc.identifier.citedreferenceMaurer, B.A. ( 1999 ). Untangling Ecological Complexity: The Macroscopic Perspective. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceMaurer, B.A. & Brown, J.H. ( 1988 ). Distribution of energy use and biomass among species of north-american terrestrial birds. Ecology, 69, 1923 – 1932.en_US
dc.identifier.citedreferenceMay, R. ( 1975 ). Patterns of Species Abundance and Diversity. Harvard University Press, Cambridge.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2003 ). Does mother nature really prefer rare species or are log-left-skewed SADs a sampling artefact? Ecol. Lett., 6, 766 – 773.en_US
dc.identifier.citedreferenceMcGill, B.J. ( 2008 ). Exploring predictions of abundance from body mass using hierarchical comparative approaches. Am. Nat., 172, 88 – 101.en_US
dc.identifier.citedreferenceMcGill, B.J., Maurer, B.A. & Weiser, M.D. ( 2006a ). Empirical evaluation of neutral theory. Ecology, 87, 1411 – 1423.en_US
dc.identifier.citedreferenceMcGill, B.J., Enquist, B.J., Weiher, E. & Westoby, M. ( 2006b ). Rebuilding community ecology from functional traits. Trends Ecol. Evol., 21, 178 – 185.en_US
dc.identifier.citedreferenceMcGill, B.J., Etienne, R.S., Gray, J.S., Alonso, D., Anderson, M.J., Benecha, H.K. et al. ( 2007 ). Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecol. Lett., 10, 995 – 1015.en_US
dc.identifier.citedreferenceMorlon, H., Chuyong, G., Condit, R., Hubbell, S., Kenfack, D., Thomas, D. et al. ( 2008 ). A general framework for the distance-decay of similarity in ecological communities. Ecol. Lett., 11, 904 – 917.en_US
dc.identifier.citedreferenceMotomura, I. ( 1932 ). On the statistical treatment of communities. Zool. Mag., 44, 379 – 383.en_US
dc.identifier.citedreferenceNagy, K.A., Girard, I.A. & Brown, T.K. ( 1999 ). Energetics of free-ranging mammals, reptiles, and birds. Annu. Rev. Nutr., 19, 247 – 277.en_US
dc.identifier.citedreferenceNee, S., Harvey, P.H. & May, R.M. ( 1991 ). Lifting the veil on abundance patterns. Proc. R. Soc. Lond. B, 243, 161 – 163.en_US
dc.identifier.citedreferenceO’Dwyer, J., Lake, J., Ostling, A., Savage, V. & Green, J.L. ( 2009 ). An integrative framework for stochastic, size-structured community assembly. Proc. Natl. Acad. Sci. U.S.A., 106, 6170 – 6175.en_US
dc.identifier.citedreferenceOdum, H. ( 1983 ). Systems Ecology: An Introduction. University Press of Colorado, Niwot.en_US
dc.identifier.citedreferencePagel, M.D., Harvey, P. & Godfray, H.C.J. ( 1991 ). Species-abundance, biomass and resource use distribution. Am. Nat., 138, 836 – 850.en_US
dc.identifier.citedreferencePeters, R. ( 1983 ). The Ecological Implications of Body Size. Cambridge University Press, Cambridge.en_US
dc.identifier.citedreferencePlotkin, J.B. & Muller-Landau, H.C. ( 2002 ). Sampling the species composition of a landscape. Ecology, 83, 3344 – 3356.en_US
dc.identifier.citedreferencePreston, F.W. ( 1948 ). The commonness, and rarity of species. Ecology, 29, 254 – 283.en_US
dc.identifier.citedreferencePreston, F.W. ( 1962 ). The canonical distribution of commonness and rarity. Ecology, 43, 185 – 215.en_US
dc.identifier.citedreferencePueyo, S., He, F. & Zillio, T. ( 2007 ). The maximum entropy formalism and the idiosyncratic theory of biodiversity. Ecol. Lett., 10, 1017 – 1028.en_US
dc.identifier.citedreferenceReich, P.B., Wright, I.J., Cavender-Bares, J., Craine, J.M., Oleksyn, J., Westoby, M. et al. ( 2003 ). The evolution of plant functional variation: traits, spectra, and strategies. Int. J. Plant Sci., 164, S143 – S164.en_US
dc.identifier.citedreferenceReuman, D., Mulder, C., Raffaelli, D. & Cohen, J.E. ( 2008 ). Three allometric relations of population density to body mass: theoretical integration and empirical tests in 149 food webs. Ecol. Lett., 11, 1216 – 1228.en_US
dc.identifier.citedreferenceRobbins, C.S., Bystrak, D. & Geissler, P.H. ( 1986 ). The Breeding Bird Survey: Its First Fifteen Years, 1965–1979. Resource Publication 157. U.S. Department of the Interior, Fish and Wildlife Service, Washington D.C.en_US
dc.identifier.citedreferenceSaint-Germain, M., Buddle, C.M., Larrivee, M., Mercado, A., Motchula, T., Reichert, E. et al. ( 2007 ). Should biomass be considered more frequently as a currency in terrestrial arthropod community analyses? J. Appl. Ecol., 44, 330 – 339.en_US
dc.identifier.citedreferenceSauer, J.R., Hines, J.E. & Fallon, J. ( 2008 ). The North American Breeding Bird Survey, Results and Analysis 1966–2007. Version 5.15.2008. USGS Patuxent Wildlife Research Center, Laurel, MD.en_US
dc.identifier.citedreferenceSchmid, P.E., Tokeshi, M. & Schmid-Araya, J.M. ( 2000 ). Relation between population density and body size in stream communities. Science, 289, 1557 – 1560.en_US
dc.identifier.citedreferenceSmith, B. & Wilson, J.B. ( 1996 ). A consumer’s guide to evenness indices. Oikos, 76, 70 – 82.en_US
dc.identifier.citedreferenceStegen, J.C. & White, E.P. ( 2008 ). On the relationship between mass and diameter distributions in tree communities. Ecol. Lett., 11, 1287 – 1293.en_US
dc.identifier.citedreferenceSterner, R. & Elser, J. ( 2002 ). Ecological Stoichiometry. The Biology of Elements from Molecules to the Biosphere. Princeton University Press, Princeton, NJ.en_US
dc.identifier.citedreferenceStorch, D., Sizling, A., Reif, J., Polechova, J., Sizlingova, E. & Gaston, K. ( 2008 ). The quest for a null model for macroecological patterns: geometry of species distributions at multiple spatial scales. Ecol. Lett., 11, 771 – 784.en_US
dc.identifier.citedreferenceSugihara, G. ( 1980 ). Minimal community structure: an explanation of species abundance patterns. Am. Nat., 116, 770 – 787.en_US
dc.identifier.citedreferenceSugihara, G. ( 1989 ). How do species divide resources? Am. Nat., 133, 458 – 463.en_US
dc.identifier.citedreferenceTaper, M.L. & Marquet, P.A. ( 1996 ). How do species really divide resources? Am. Nat., 147, 1072 – 1086.en_US
dc.identifier.citedreferenceThibault, K.M., White, E.P. & Ernest, M. ( 2004 ). Temporal dynamics in the structure and composition of a desert rodent community. Ecology, 85, 2649 – 2655.en_US
dc.identifier.citedreferenceTokeshi, M. ( 1990 ). Niche apportionment or random assortment: species abundance patterns revisited. J. Anim. Ecol., 59, 1129 – 1146.en_US
dc.identifier.citedreferenceTokeshi, M. ( 1999 ). Species Coexistence. Ecological and Evolutionary Perspectives. Blackwell Science, Oxford.en_US
dc.identifier.citedreferenceVolterra, V. ( 1926 ). Fluctuations in the abundance of a species considered mathematically. Nature, 118, 558 – 560.en_US
dc.identifier.citedreferenceWarwick, R. ( 1986 ). A new method for detecting pollution effects on marine macrobenthic communities. Mar. Biol., 92, 557 – 562.en_US
dc.identifier.citedreferenceWerner, E.E. & Gilliam, J.F. ( 1984 ). The ontogenetic niche and species interactions in size structured populations. Annu. Rev. Ecol. Syst., 15, 393 – 425.en_US
dc.identifier.citedreferenceWest, G.B., Brown, J.H. & Enquist, B.J. ( 1997 ). A general model for the origin of allometric scaling laws in biology. Science, 276, 122 – 126.en_US
dc.identifier.citedreferenceWhite, E.P., Ernest, S. & Thibault, K.M. ( 2004 ). Trade-offs in community properties through time in a desert rodent community. Am. Nat., 164, 670 – 676.en_US
dc.identifier.citedreferenceWhite, E.P., Ernest, S., Kerkhoff, A.J. & Enquist, B. ( 2007 ). Relationships between body size and abundance in ecology. Trends Ecol. Evol., 22, 323 – 330.en_US
dc.identifier.citedreferenceWilson, J.B., Wells, T.C.E., Trueman, I.C., Jones, G., Atkinson, A.D., Crawley, N.J. et al. ( 1996 ). Are there assembly rules for plant species abundance? An investigation in relation to soil resources and successional trends. J. Ecol., 84, 527 – 538.en_US
dc.identifier.citedreferenceWright, S. ( 1938 ). Size of population and breeding structure in relation to evolution. Science, 87, 430 – 2264.en_US
dc.identifier.citedreferenceWright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F. et al. ( 2004 ). The worldwide leaf economics spectrum. Nature, 428, 821 – 828.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.