Show simple item record

Puberty, Ovarian Steroids, and Stress

dc.contributor.authorYoung, Elizabeth A.en_US
dc.contributor.authorAltemus, Margareten_US
dc.date.accessioned2010-06-01T20:38:14Z
dc.date.available2010-06-01T20:38:14Z
dc.date.issued2004-06en_US
dc.identifier.citationYOUNG, ELIZABETH A.; ALTEMUS, MARGARET (2004). "Puberty, Ovarian Steroids, and Stress." Annals of the New York Academy of Sciences 1021(1 Adolescent Brain Development: Vulnerabilities and Opportunities ): 124-133. <http://hdl.handle.net/2027.42/73743>en_US
dc.identifier.issn0077-8923en_US
dc.identifier.issn1749-6632en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73743
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=15251881&dopt=citationen_US
dc.description.abstractPuberty is accompanied by a number of changes, among them increased risk for development of major depression. The most common etiology of major depression is stressful life events, being present in approximately 90% of first episodes of depression. The hypothalamic-pituitary-adrenal (HPA) axis is one of the major systems involved in responses to stress, and this system is clearly influenced by ovarian hormones. Normal women demonstrate resistance to negative feedback of both cortisol in the fast-feedback paradigm and dexamethasone in the standard delayed-feedback paradigm. Depressed premenopausal women show greater increases in baseline cortisol than postmenopausal depressed women and than depressed men. Studies in rodents suggest a similar resistance to glucocorticoid feedback but suggest that estradiol can function to inhibit stress responsiveness. Studies of premenopausal depressed women demonstrate lower estradiol, which suggests that there is less inhibitory feedback of estradiol on the HPA axis, while normal progesterone continues to augment stress responses further. The onset of these reproductive hormonal changes modulating stress systems at puberty may sensitize girls to stressful life events, which become more frequent at the transition to puberty and young adulthood.en_US
dc.format.extent209028 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2004 New York Academy of Sciencesen_US
dc.subject.otherOvarian Steroidsen_US
dc.subject.otherStress Hormonesen_US
dc.subject.otherDepressionen_US
dc.subject.otherPubertyen_US
dc.titlePuberty, Ovarian Steroids, and Stressen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelScience (General)en_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Psychiatry and Mental Health Research Institute, University of Michigan, Ann Arbor, Michigan 48109, USAen_US
dc.contributor.affiliationotherDepartment of Psychiatry, Weill-Cornell Medical School, New York, New York 10021, USAen_US
dc.identifier.pmid15251881en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73743/1/annals.1308.013.pdf
dc.identifier.doi10.1196/annals.1308.013en_US
dc.identifier.sourceAnnals of the New York Academy of Sciencesen_US
dc.identifier.citedreference1 Brown, G.W. & T. Harris. 1978. Social Origins of Depression: A Study of Psychiatric Disorder in Women. The Free Press. New York.en_US
dc.identifier.citedreferenceFrank, E., B. Anderson, C. Reynolds, et al. 1994. Life events and the research diagnostic criteria endogenous subtype: a confirmation of the distinction using the Bedford College methods. Arch. Gen. Psychiatry 51: 519 – 524.en_US
dc.identifier.citedreferenceKendler, K.S., R.C. Kessler, E.E. Walters, et al. 1995. Stressful life events, genetic liability and onset of an episode of major depression in women. Am. J. Psychiatry 152: 833 – 842.en_US
dc.identifier.citedreferenceKeller-Wood, M.E. & M.F. Dallman. 1985. Corticosteroid inhibition of ACTH secretion. Endocrinol. Rev. 5: 1 – 24.en_US
dc.identifier.citedreferenceSchacter, B.S., L.K. Johnson, J.D. Baxter & J.L. Roberts. 1982. Differential regulation by glucocorticoids of proopiomelanocortin mRNA levels in the anterior and intermediate lobes of the rat pituitary. Endocrinology 110: 1142.en_US
dc.identifier.citedreferenceRoberts, J.L., M.L. Budarf, J.D. Baxter & E. Herbert. 1979. Selective reduction of proadrenocorticotropin/endorphin proteins and messenger ribonucleic acid activity in mouse pituitary tumor cells by glucocorticoids. Biochemistry 18: 4907 – 4915.en_US
dc.identifier.citedreferenceBirnberg, N.C., O. Civelli, J.C. Lissitzski, et al. 1982. Regulation of pro-opiomelanocortin gene expression in the pituitary and central nervous system. Endocrinology 110: 134A.en_US
dc.identifier.citedreferenceSakly, M. & B. Koch. 1981. Ontogenesis of glucocorticoid receptors in anterior pituitary gland: transient dissociation among cytoplasmic receptor density, nuclear uptake and regulation of corticotropic activity. Endocrinology 108: 591.en_US
dc.identifier.citedreferenceChilds, G.V., J.L. Morell, A. Niendorf & G. Aguilera. 1986. Cytochemical studies of corticotropin releasing factor receptors in anterior lobe corticotrophs: binding, glucocorticoid regulation and endocytosis of [biotinyl-ser1] CRF. Endocrinology 119: 2129.en_US
dc.identifier.citedreferenceSchwartz, J., N. Billestrup, M. Perrin, et al. 1986. Identification of corticotropin releasing factor target cells and effects of dexamethasone on binding in anterior pituitary using a flourescent analog of CRF. Endocrinology 119: 2376.en_US
dc.identifier.citedreferenceMcEwen, B.S., J.M. Weiss & L.S. Schwartz. 1968. Selective retention of corticosterone by limbic structures in the rat brain. Nature 220: 911.en_US
dc.identifier.citedreferenceMcEwen, B.S., J.M. Weiss & L.S. Schwartz. 1970. Retention of corticosterone by cell nuclei from brain regions of adrenalectomized rats. Brain Res. 17: 471.en_US
dc.identifier.citedreferencedeKloet, R., G. Wallach & B.S. McEwen. 1975. Differences in corticosterone and dexamethasone binding to rat brain and pituitary. Endocrinology 96: 598.en_US
dc.identifier.citedreferenceReul, J.M.H & E.R. deKloet. 1985. Two receptor systems for corticosterone in rat brain: microdistribution and differential occupation. Endocrinology 117: 2505 – 2511.en_US
dc.identifier.citedreferenceHerman, J.P., M.K-H. Schafer, E.A. Young, et al. 1989. Hippocampal regulation of the hypothalamo-pituitary-adrenocortical axis: in situ hybridization analysis of CRF and vasopressin messenger RNA expression in the hypothalamic paraventricular nucleus following hippocampectomy. J. Neurosci. 9: 3072 – 3082.en_US
dc.identifier.citedreferenceYoung, E.A. & D. Vazquez. 1996. Hypercortisolemia, hippocampal glucocorticoid receptors and fast feedback. Mol. Psychiatry 1: 149 – 159.en_US
dc.identifier.citedreferenceSapolsky, R.M., L.C. Krey & B.S. McEwen. 1986. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrinol. Rev. 7: 284 – 301.en_US
dc.identifier.citedreferenceHalbreich, U., G.M. Asnis, B. Zumoff & R.S. Nathan. 1984. The effect of age and sex on cortisol secretion in depressives and normals. Psychiatry Res. 13: 221 – 229.en_US
dc.identifier.citedreferenceLewis, D.A., B. Pfohl, J. Schlecte & W. Coryell. 1984. Influence of age on the cortisol response to dexamethasone. Psychiatry Res. 13: 213 – 220.en_US
dc.identifier.citedreferenceAkil, H., R. Haskett, E.A. Young, et al. 1993. Multiple HPA profiles in endogenous depression: effect of age and sex on cortisol and beta-endorphin. Biol. Psychiatry 33: 73 – 85.en_US
dc.identifier.citedreferenceJones, M.T., F.R. Brush & R.L.B. Neame. 1972. Characteristics of fast feedback control of corticotrophin release by corticosteroids. J. Endocrinol. 55: 489.en_US
dc.identifier.citedreferenceBurgess, L.H. & R.J. Handa. 1992. Chronic estrogen-induced alterations in adrenocorticotropin and corticosterone secretion, and glucocorticoid receptor-mediated functions in female rats. Endocrinology 131: 1261 – 1269.en_US
dc.identifier.citedreferenceViau, V. & M.J. Meaney. 1991. Variations in the hypothalamic-pituitary-adrenal response to stress during the estrous cycle in the rat. Endocrinology 129: 2503 – 2511.en_US
dc.identifier.citedreferenceVamvakopoulos, N.C. & G.P. Chrousos. 1993. Evidence of direct estrogenic regulation of human corticotropin-releasing hormone gene expression. J. Clin. Invest. 92: 1896 – 1902.en_US
dc.identifier.citedreferenceYoung, E.A., M. Altemus, V. Parkison & S. Shastry. 2001. Effects of estrogen antagonists and agonists on the ACTH response to restraint stress. Neuropsychopharmacology 25: 881 – 891.en_US
dc.identifier.citedreferenceRedei, E., L. Li, R.F. McGivern & F. Aird. 1994. Fast glucocorticoid feedback inhibition of ACTH secretion in the ovariectomized rat: effect of chronic estrogen and progesterone. Neuroendocrinology 60: 113 – 123.en_US
dc.identifier.citedreferenceKomesaroff, P.A., M. Esler, I.J. Clarke, et al. 1998. Effects of estrogen and estrous cycle on glucocorticoid and catecholamine responses to stress in sheep. Am. J. Physiology 275: E671 – E678.en_US
dc.identifier.citedreferenceKirschbaum, C., N. Schommer, I. Federenko, et al. 1996. Short-term estradiol treatment enhances pituitary-adrenal axis and sympathetic responses to psychosocial stress in healthy young men. J. Clin. Endocrinol. Metab. 81: 3639 – 3643.en_US
dc.identifier.citedreferenceKudielka, B.M., A.K. Schmidt-Reinwald, D.H. Hellhammer & C. Kirschbaum. 1999. Psychological and endocrine responses to psychosocial stress and dexamethasone/corticotropin-releasing hormone in healthy postmenopausal women and young controls: the impact of age and a two-week estradiol treatment. Neuroendocrinology 70: 422 – 430.en_US
dc.identifier.citedreferenceKomesaroff, P.A., M.D. Esler & K. Sudhir. 1999. Effects of estrogen on stress responses in women. J. Clin. Endocrinol. Metab. 84: 4292 – 4293.en_US
dc.identifier.citedreferenceRousseau, G.G., J.D. Baxter & G.M. Tomkins. 1972. Glucocorticoid receptors: relations between steroid binding and biological effects. Mol. Biol. 67: 99 – 115.en_US
dc.identifier.citedreferenceSvec, F. 1988. Differences in the interaction of RU 486 and ketoconazole with the second binding site of the glucocorticoid receptor. Endocrinology 123: 1902 – 1906.en_US
dc.identifier.citedreferenceTurner, B.B. & D.A. Weaver. 1985. Sexual dimorphism of glucocorticoid binding in rat brain. Brain Res. 343: 16 – 23.en_US
dc.identifier.citedreferenceAhima R.S., A.N.L. Lawson, S.Y.S. Osei & R.E. Harlan. 1992. Sexual dimorphism in regulation of type II corticosteroid receptor immunoreactivity in the rat hippocampus. Endocrinology 131: 1409 – 1416.en_US
dc.identifier.citedreferenceDuncan, M.R. & G.R. Duncan. 1979. An in vivo study of the action of antiglucocorticoids on thymus weight ratio, antibody titre and the adrenal-pituitary-hypothalamus axis. J. Steroid Biochem. 10: 245 – 259.en_US
dc.identifier.citedreferenceArriza, J.L., C. Weinberger, G. Cerelli, et al. 1987. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268 – 275.en_US
dc.identifier.citedreferenceCarey, M.P., C.H. Deterd, J. de Koning, et al. 1995. The influence of ovarian steroids on hypothalamic-pituitary-adrenal regulation in the female rat. J. Endocrinology 144: 311 – 321.en_US
dc.identifier.citedreferenceKeller-Wood, M., J. Silbiger & C.E. Wood. 1988. Progesterone attenuates the inhibition of adrenocorticotropin responses by cortisol in nonpregnant ewes. Endocrinology 123: 647 – 651.en_US
dc.identifier.citedreferenceKirschbaum, C., B.M. Kudielka, J. Gaab, et al. 1999. Impact of gender, menstrual cycle phase, and oral contraceptives on the activity of the hypothalamic-pituitary-adrenal axis. Psychosom. Med. 61: 154 – 162.en_US
dc.identifier.citedreferenceYoung, E.A. 1995. The glucocorticoid cascade hypothesis revisited: role of gonadal steroids. Depression 3: 20 – 27.en_US
dc.identifier.citedreferenceAltemus, M., L. Redwine, L. Yung-Mei, et al. 1997. Reduced sensitivity to glucocorticoid feedback and reduced glucocorticoid receptor mRNA expression in the luteal phase of the menstrual cycle. Neurosychopharmacology 17: 100 – 109.en_US
dc.identifier.citedreference42 Roca, C.A., P.J. Schmidt, M. Altemus, et al. 1998. Effects of reproductive steroids on the hypothalamic-pituitary-adrenal axis response to low dose dexamethasone. Abstract at Neuroendocrine Workshop on Stress. New Orleans, LA.en_US
dc.identifier.citedreferenceRoca, C.A., P.J. Schmidt, M. Altemus, et al. 2003. Differential menstrual cycle regulation of hypothalamic-pituitary-adrenal axis in women with premenstrual syndrome and controls. J. Clin. Endocrinol. Metab. 88: 3057 – 3063.en_US
dc.identifier.citedreferenceDemey-Ponsart, E., J.M. Foidart, J. Sulon & J.C. Sodoyez. 1982. Serum CBG, free and total cortisol and circadian patterns of adrenal function in normal pregnancy. J. Steroid Biochem. 16: 165 – 169.en_US
dc.identifier.citedreferenceCarr, B.R., C.R. Parker, Jr., J.D. Madden, et al. 1981. Maternal plasma adrenocorticotropin and cortisol relationships throughout human pregnancy. Am. J. Obstet. Gynecol. 139: 416 – 422.en_US
dc.identifier.citedreferenceNolten, W.E. & P.A. Rueckert. 1981. Elevated free cortisol index in pregnancy: possible regulatory mechanisms. Am. J. Obstet. Gynecol. 139: 492 – 498.en_US
dc.identifier.citedreferenceYoung, E.A. 1996. Sex differences in response to exogenous corticosterone. Mol. Psychiatry 1: 313 – 319.en_US
dc.identifier.citedreferenceAltemus, M., C. Roca, E. Galliven, et al. 2001. Increased vasopressin and adrenocorticotropin responses to stress in the midluteal phase of the menstrual cycle. J. Clin. Endocrinol. Metab. 86: 2525 – 2530.en_US
dc.identifier.citedreferenceMunck, A. & P.M. Guyre. 1986. Glucocorticoid physiology, pharmacology and stress. Adv. Exp. Med Biol. 196: 81 – 96.en_US
dc.identifier.citedreferenceCyranowski, J.M., E. Frank, E.A. Young & M.K. Shear. 2000. Adolescent onset of the gender difference in lifetime rates of major depression: a theoretical model. Arch. Gen. Psychiatry 57: 21 – 27.en_US
dc.identifier.citedreference51 McEwen, B. 1995. Adrenal steroid actions on brain dissecting the fine line between protection and damage. In Neurobiological and Clinical Consequences of Stress: From Normal Adaptation to PTSD. M.J. Friedman, D.S. Charney & A.Y. Deutch, Eds.: 135-147. Lippincott-Raven Publishers. Philadelphia.en_US
dc.identifier.citedreferenceBreslau, N., H. Chilcoat & L.R. Schultz. 1998. Anxiety disorders and the emergence of sex differences in major depression. J. Gender Specif. Med. 1: 33 – 39.en_US
dc.identifier.citedreferenceYoung, E.A., A.R. Midgley, N.E. Carlson & M.B. Brown. 2000. Alteration in the hypothalamic-pituitary-ovarian axis in depressed women. Arch. Gen. Psychiatry 57: 1157 – 1162.en_US
dc.identifier.citedreferenceLu, N.Z. & C.L. Bethea. 2002. Ovarian steroid regulation of 5-HT1A receptor binding and G protein activation in female monkeys. Neuropsychopharmacology 27: 12 – 24.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.