Show simple item record

Modularity of the rodent mandible: Integrating bones, muscles, and teeth

dc.contributor.authorZelditch, Miriam Leahen_US
dc.contributor.authorWood, Aaron Roberten_US
dc.contributor.authorBonett, Ronald M.en_US
dc.contributor.authorSwiderski, Donald L.en_US
dc.date.accessioned2010-06-01T20:39:43Z
dc.date.available2010-06-01T20:39:43Z
dc.date.issued2008-11en_US
dc.identifier.citationZelditch, Miriam Leah; Wood, Aaron R.; Bonett, Ronald M.; Swiderski, Donald L. (2008). "Modularity of the rodent mandible: Integrating bones, muscles, and teeth." Evolution & Development 10(6): 756-768. <http://hdl.handle.net/2027.42/73767>en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73767
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19021747&dopt=citationen_US
dc.description.abstractSeveral models explain how a complex integrated system like the rodent mandible can arise from multiple developmental modules. The models propose various integrating mechanisms, including epigenetic effects of muscles on bones. We test five for their ability to predict correlations found in the individual (symmetric) and fluctuating asymmetric (FA) components of shape variation. We also use exploratory methods to discern patterns unanticipated by any model. Two models fit observed correlation matrices from both components: (1) parts originating in same mesenchymal condensation are integrated, (2) parts developmentally dependent on the same muscle form an integrated complex as do those dependent on teeth. Another fits the correlations observed in FA: each muscle insertion site is an integrated unit. However, no model fits well, and none predicts the complex structure found in the exploratory analyses, best described as a reticulated network. Furthermore, no model predicts the correlation between proximal parts of the condyloid and coronoid, which can exceed the correlations between proximal and distal parts of the same process. Additionally, no model predicts the correlation between molar alveolus and ramus and/or angular process, one of the highest correlations found in the FA component. That correlation contradicts the basic premise of all five developmental models, yet it should be anticipated from the epigenetic effects of mastication, possibly the primary morphogenetic process integrating the jaw coupling forces generated by muscle contraction with those experienced at teeth.en_US
dc.format.extent488817 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Inc.en_US
dc.titleModularity of the rodent mandible: Integrating bones, muscles, and teethen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumMuseum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumDepartment of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumKresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationumMuseum of Zoology, University of Michigan, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USAen_US
dc.identifier.pmid19021747en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73767/1/j.1525-142X.2008.00290.x.pdf
dc.identifier.doi10.1111/j.1525-142X.2008.00290.xen_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceAdams, D. C., Rohlf, F. J., and Slice, D. E. 2004. Geometric morphometrics: ten years of progress following the ‘revolution.’ Ital. J. Zool. 71: 5 – 16.en_US
dc.identifier.citedreferenceAndresen, P. R., Bookstein, F. L., Conradsen, K., ErsbØll, B., Marsh, J., and Kreiborg, S. 2000. Surface-bounded growth modeling applied to human mandibles. IEEE Trans. Med. Imag. 19: 1053 – 1063.en_US
dc.identifier.citedreferenceAtchley, W. R. 1983. A genetic analysis of the mandible and maxilla in the rat. J. Craniofac. Genet. Dev. Biol. 3: 409 – 422.en_US
dc.identifier.citedreferenceAtchley, W. R. ( 1993 ). Genetic and developmental aspects of variability in the mammalian mandible. In J. Hanken and B. K. Hall (eds.). The Skull. University of Chicago Press, Chicago, pp. 207 – 247.en_US
dc.identifier.citedreferenceAtchley, W. R., Cowley, D. E., Vogl, C., and McLellan, T. 1992. Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Syst. Biol. 41: 196 – 221.en_US
dc.identifier.citedreferenceAtchley, W. R., and Hall, B. K. 1991. A model for development and evolution of complex morphological structures. Biol. Rev. Cambridge Phil. Soc. 66: 101 – 157.en_US
dc.identifier.citedreferenceAtchley, W. R., Plummer, A. A., and Riska, B. 1985. Genetics of mandible form in the mouse. Genetics 111: 555 – 577.en_US
dc.identifier.citedreferenceAuffray, J.-C., Alibert, P., Renaud, S., Orth, A., and Bonhomme, F. 1996. Fluctuating asymmetry in Mus musculus subspecific hybridization: traditional and procrustes comparative approaches. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice (eds.). Advance in Morphometrics. Nato ASI Series, Series A, Life Science. pp. 275 – 284.en_US
dc.identifier.citedreferenceBadyaev, A. V., and Foresman, K. R. 2004. Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles. Am. Natural. 163: 868 – 879.en_US
dc.identifier.citedreferenceBadyaev, A. V., Foresman, K. R., and Fernandes, M. V. 2000. Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology 81: 336 – 345.en_US
dc.identifier.citedreferenceBadyaev, A. V., Foresman, K. R., and Young, R. L. 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation. Am. Natural. 166: 382 – 395.en_US
dc.identifier.citedreferenceBolker, J. A. 2000. Modularity in development and why it matters to evo-devo. Am. Zool. 40: 770 – 776.en_US
dc.identifier.citedreferenceBookstein, F. L. 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1: 97 – 118.en_US
dc.identifier.citedreferenceBookstein, F. L., Streissguth, A. P., Sampson, P. D., Connor, P. D., and Barr, H. M. 2002. Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage 15: 233 – 251.en_US
dc.identifier.citedreferenceBurr, D. B., Robling, A. G., and Turner, C. H. 2002. Effects of biomechanical stress on bones in animals. Bone 30: 781 – 786.en_US
dc.identifier.citedreferenceCarter, D. R., Van der Meulen, M. C. H., and Beaupre, G. S. 1996. Mechanical factors in bone growth and development. Bone 18: S5 – S10.en_US
dc.identifier.citedreferenceCheverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36: 499 – 516.en_US
dc.identifier.citedreferenceCheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theoret. Biol. 110: 155 – 171.en_US
dc.identifier.citedreferenceCheverud, J. M. 1995. Morphological integration in the saddle-back tamarin ( Saguinus fuscicollis ) cranium. Am. Natural. 145: 63 – 89.en_US
dc.identifier.citedreferenceCheverud, J. M. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44 – 50.en_US
dc.identifier.citedreferenceCheverud, J. M. 2004. Modular pleiotropic effects of quantitative trait loci on morphological traits. Modul. Dev. Evol. 132 – 153.en_US
dc.identifier.citedreferenceCheverud, J. M., Hartman, S. E., Richtsmeier, J. T., and Atchley, W. R. 1991. A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite-element scaling analysis. J. Craniofac. Genet. Dev. Biol. 11: 122 – 137.en_US
dc.identifier.citedreferenceDietz, E. J. 1983. Permutation tests for association between 2 distance matrices. Syst. Zool. 32: 21 – 26.en_US
dc.identifier.citedreferenceDow, M. M., and Cheverud, J. M. 1985. Comparison of cistance matrices in studies of population-structure and genetic microdifferentiation – Quadratic assignment. Am. J. Phys. Anthropol. 68: 367 – 373.en_US
dc.identifier.citedreferenceFarris, J. S. 1969. On the cophenetic correlation coefficient. Syst. Zool. 18: 279 – 285.en_US
dc.identifier.citedreferenceGerhart, J., and Kirschner, M. 2007. The theory of facilitated variation. Proc. Natl. Acad. Sci. USA 104: 8582 – 8589.en_US
dc.identifier.citedreferenceGoswami, A. 2006. Cranial modularity shifts during mammalian evolution. Am. Natural. 168: 270 – 280.en_US
dc.identifier.citedreferenceGreen, W. D. K. 1996. The thin-plate spline and images with curving features. In K. V. Mardia, C. A. Gill, and I. L. Dryden (eds.). Image Fusion and Shape Variability. University of Leeds Press, Leeds, pp. 79 – 87.en_US
dc.identifier.citedreferenceGunz, P., Mitteroecker, P., and Bookstein, F. L. 2005. Semilandmarks in three dimensions. In D. E. Slice (ed.). Modern Morphometrics in Physical Anthropology. Kluwer Academic/Plenum Publishers, New York, pp. 73 – 98.en_US
dc.identifier.citedreferenceHall, B. K. 2003. Unlocking the black box between genotype and phenotype: cell condensations as morphogenetic (modular) units. Biol. Phil. 18: 219 – 247.en_US
dc.identifier.citedreferenceHall, B. K., and Herring, S. W. 1990. Paralysis and growth of the musculoskeletal system in the embryonic chick. J. Morphol. 206: 45 – 56.en_US
dc.identifier.citedreferenceHall, B. K., and Miyake, T. 2000. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22: 138 – 147.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Dorval, C. J., Zelditch, M. L., and German, R. Z. 2004. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. J. Anat. 205: 501 – 517.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., and Jirik, F. R. 2007a. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol. Dev. 9: 76 – 91.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Lieberman, D. E., Young, N. M., Parsons, T., and Wat, S. 2007b. Evolution of covariance in the mammalian skull. Novartis Found Symp. 284: 164 – 185; discussion 185–190.en_US
dc.identifier.citedreferenceHallgrÍmsson, B., Willmore, K., and Hall, B. K. 2002. Canalization, developmental stability, and morphological integration in primate limbs. Yearbook Phys. Anthropol. 45: 131 – 158.en_US
dc.identifier.citedreferenceHarris, S. E., et al. 2004. Mapping expression patterns of mechanically responsive genes, DMP1 and MEPE, in osteocytes using the mouse ulnae: correlation to predicted local strain. J. Bone Mineral Res. 19: S28 – S28.en_US
dc.identifier.citedreferenceHenderson, J. H., Longaker, M. T., and Carter, D. R. 2004. Sutural bone deposition rate and strain magnitude during cranial development. Bone 34: 271 – 280.en_US
dc.identifier.citedreferenceHerring, S. W. 1993. Formation of the vertebrate face: epigenetic and functional influences. Am. Zool. 33: 472 – 483.en_US
dc.identifier.citedreferenceHerring, S. W. 1994. Development of functional interactions between skeletal and muscular systems. In B. K. Hall (ed.). Bone Vol. 9: Differentiation and Morphogenesis of Bone. CRC Press Inc., Boca Raton, pp. 165 – 191.en_US
dc.identifier.citedreferenceHerring, S. W., and Lakars, T. C. 1981. Craniofacial development in the absence of muscle contraction. J. craniofac. Genet. Dev. Biol. 1: 341 – 357.en_US
dc.identifier.citedreferenceHood, G. M. 2008. PopTools version 3.0.3. URL: http://www.cse.csiro.au/poptoolsen_US
dc.identifier.citedreferenceJojic, V., Blagojevic, J., Ivanovic, A., Bugarski-Stanojevic, V., and Vujosevic, M. 2007. Morphological integration of the mandible in yellow-necked field mice: the effects of B chromosomes. J. Mammal. 88: 689 – 695.en_US
dc.identifier.citedreferenceKaufman, L., and Rousseeuw, P. 1990. Finding Groups in Data, an Introduction to Cluster Analysis. Wiley, New York.en_US
dc.identifier.citedreferenceKlingenberg, C. P. 2004. Integration, modules, and development – Molecules to morphology to evolution. Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes. Oxford University Press, Oxford, pp. 213 – 230.en_US
dc.identifier.citedreferenceKlingenberg, C. P. 2005. Developmental constraints, modules, and evolvability. In B. Hallgrimsson and B. K. Hall (eds.). Variation: A Central Concept in Biology. Elsevier Academic Press, San Diego, pp. 219 – 247.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Badyaev, A. V., Sowry, S. M., and Beckwith, N. J. 2001. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am. Natural. 157: 11 – 23.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909 – 1920.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Leamy, L. J., and Cheverud, J. M. 2004. Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166: 1909 – 1921.en_US
dc.identifier.citedreferenceKlingenberg, C. P., and McIntyre, G. S. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52: 1363 – 1375.en_US
dc.identifier.citedreferenceKlingenberg, C. P., Mebus, K., and Auffray, J. C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5: 522 – 531.en_US
dc.identifier.citedreferenceKlingenberg, C. P., and Zaklan, S. D. 2000. Morphological integration between developmental compartments in the Drosophila wing. Evolution 54: 1273 – 1285.en_US
dc.identifier.citedreferenceLande, R. 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203 – 215.en_US
dc.identifier.citedreferenceLeamy, L. 1984. Morphometric studies in inbred and hybrid house mice. 5. Directional and fluctuating asymmetry. Am. Natural. 123: 579 – 593.en_US
dc.identifier.citedreferenceMaechler, M., Rousseeuw, P., Struyf, A., and Hubert, M. 2005. Cluster analysis basics and extensions.en_US
dc.identifier.citedreferenceMagwene, P. M. ( 2001 ). New tools for studying integration and modularity. Evolution 55: 1734 – 1745.en_US
dc.identifier.citedreferenceMakarenkov, U. 2000. T-Rex, ver. 4.0a1. URL: http://www.labunix.uqam.ca/~makarenv/trex.htmlen_US
dc.identifier.citedreferenceMakarenkov, V., and Legendre, P. 2004. From a phylogenetic tree to a reticulated network. J. Comput. Biol. 11: 195 – 212.en_US
dc.identifier.citedreferenceMakarenkov, V., Legendre, P., and Desdevises, Y. 2004. Modelling phylogenetic relationships using reticulated networks. Zool. Scripta 33: 89 – 96.en_US
dc.identifier.citedreferenceMarquez, E. 2007a. Coriandis. URL: http://www-personal.umich.edu/~emarquez/morph/index.htmlen_US
dc.identifier.citedreferenceMarquez, E. 2007b. Sage, ver. 1.03. URL: http://www-personal.umich.edu/~emarquez/morph/index.htmlen_US
dc.identifier.citedreferenceMezey, J. G., Cheverud, J. M., and Wagner, G. P. 2000. Is the genotype-phenotype map modular: a statistical approach using mouse quantitative trait loci data. Genetics 156: 305 – 311.en_US
dc.identifier.citedreferenceMonteiro, L. R., Bonato, V., and dos Reis, S. F. 2005. Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evol. Dev. 7: 429 – 439.en_US
dc.identifier.citedreferenceMyers, P., Lundrigan, B. L., Gillespie, B. W., and Zelditch, M. L. 1996. Phenotypic plasticity in skull and dental morphology in the prairie deer mouse ( Peromyscus maniculatus bairdii ). J. Morphol. 229: 229 – 237.en_US
dc.identifier.citedreferenceNeedham, J. 1933. On the dissociability of the fundamental process in ontogenesis. Biol. Rev. Cambridge Phil. Soc. 8: 180 – 223.en_US
dc.identifier.citedreferencePalmer, A. R., and Strobeck, C. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391 – 421.en_US
dc.identifier.citedreferencePavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., and Cheverud, J. M. 2008. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62: 199 – 213.en_US
dc.identifier.citedreferenceR Development Core Team. 2008. R: A language and environment for statistical computing version 2.6.2. R Foundation for Statistical Computing Vienna, Austria. URL: http://www.r-project.org.en_US
dc.identifier.citedreferenceRaff, R. A. 1996. The Shape of Life: Genes, Development and the Evolution of Animal Form. University of Chicago Press, Chicago.en_US
dc.identifier.citedreferenceRichtsmeier, J. T., et al. 2006. Phenotypic integration of neurocranium and brain. J. Exp. Zool. Part B-Mol. Dev. Evol. 306B: 360 – 378.en_US
dc.identifier.citedreferenceRohlf, F. J. 2006. tpsDig2.1. State University of New York, Stony Brook. URL: http://life.bio.sunysb.edu/morphen_US
dc.identifier.citedreferenceRot-Nikcevic, I., Downing, K. J., Hall, B. K., and Kablar, B. 2007. Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histol. Histopathol. 22: 51 – 60.en_US
dc.identifier.citedreferenceRot-Nikcevic, I., et al. 2006. Myf5(−/−): MyoD(−/−) amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev. Genes Evol. 216: 1 – 9.en_US
dc.identifier.citedreferenceSampson, P. D., Bookstein, F. L., Sheehan, H., and Bolson, E. L. 1996. Eigenshape analysis of left ventricular outlines from contrast ventriculograms. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice (eds.). Advances in Morphometrics. Nato ASI series, Series A, Life Science. New York, pp. 131 – 152.en_US
dc.identifier.citedreferenceSattath, S., and Tversky, A. 1977. Additive similarity trees. Psychometrika 42: 319 – 345.en_US
dc.identifier.citedreferenceSheets, H. D. 2003. Semiland. URL: http://www.canisius3.edu/~sheets/morphosoft.html.en_US
dc.identifier.citedreferenceSheets, H. D., Kim, K., and Mitchell, C. E. 2004. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki. In A. M. T. Elewa (ed.). Morphometrics: Applications in Biology and Paleontology. Springer, New York, pp. 67 – 82.en_US
dc.identifier.citedreferenceSneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco.en_US
dc.identifier.citedreferenceWagner, G. P. 1988. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evol. Biol. 1: 45 – 66.en_US
dc.identifier.citedreferenceWagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36: 36 – 43.en_US
dc.identifier.citedreferenceWagner, G. P., and Altenberg, L. 1996. Complex adaptations and the evolution of evolvability. Evolution 50: 967 – 976.en_US
dc.identifier.citedreferenceWagner, G. P., Mezey, J. G., and Calabretta, R. 2005. Natural selection and the origin of modules. In W. Callebaut and D. Rasskin-Gutman (eds.). Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, Cambridge, MA, pp. 33 – 50.en_US
dc.identifier.citedreferenceWagner, G. P., Pavlicev, M., and Cheverud, J. M. 2007. The road to modularity. Nat. Rev. Genet. 8: 921 – 931.en_US
dc.identifier.citedreferenceWard, J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Statis. Assoc. 58: 236 – 244.en_US
dc.identifier.citedreferenceWilkinson, L. 2000. Systat version 10. SPSS Inc., Chicago, IL.en_US
dc.identifier.citedreferenceWillmore, K. E., Zelditch, M. L., Young, N., Ah-Seng, A., Lozanoff, S., and Hallgrimsson, B. 2006. Canalization and developmental stability in the brachyrrhine mouse. J. Anat. 208: 361 – 372.en_US
dc.identifier.citedreferenceWolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D., and Moore, A. J. 2001. Developmental interactions and the constituents of quantitative variation. Evolution 55: 232 – 245.en_US
dc.identifier.citedreferenceYoung, N. M., and Hallgrimsson, B. 2005. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59: 2691 – 2704.en_US
dc.identifier.citedreferenceYoung, R. L., and Badyaev, A. V. 2006. Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution 60: 1291 – 1299.en_US
dc.identifier.citedreferenceZelditch, M. L., and Carmichael, A. C. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 814 – 824.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.