Modularity of the rodent mandible: Integrating bones, muscles, and teeth
dc.contributor.author | Zelditch, Miriam Leah | en_US |
dc.contributor.author | Wood, Aaron Robert | en_US |
dc.contributor.author | Bonett, Ronald M. | en_US |
dc.contributor.author | Swiderski, Donald L. | en_US |
dc.date.accessioned | 2010-06-01T20:39:43Z | |
dc.date.available | 2010-06-01T20:39:43Z | |
dc.date.issued | 2008-11 | en_US |
dc.identifier.citation | Zelditch, Miriam Leah; Wood, Aaron R.; Bonett, Ronald M.; Swiderski, Donald L. (2008). "Modularity of the rodent mandible: Integrating bones, muscles, and teeth." Evolution & Development 10(6): 756-768. <http://hdl.handle.net/2027.42/73767> | en_US |
dc.identifier.issn | 1520-541X | en_US |
dc.identifier.issn | 1525-142X | en_US |
dc.identifier.uri | https://hdl.handle.net/2027.42/73767 | |
dc.identifier.uri | http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19021747&dopt=citation | en_US |
dc.description.abstract | Several models explain how a complex integrated system like the rodent mandible can arise from multiple developmental modules. The models propose various integrating mechanisms, including epigenetic effects of muscles on bones. We test five for their ability to predict correlations found in the individual (symmetric) and fluctuating asymmetric (FA) components of shape variation. We also use exploratory methods to discern patterns unanticipated by any model. Two models fit observed correlation matrices from both components: (1) parts originating in same mesenchymal condensation are integrated, (2) parts developmentally dependent on the same muscle form an integrated complex as do those dependent on teeth. Another fits the correlations observed in FA: each muscle insertion site is an integrated unit. However, no model fits well, and none predicts the complex structure found in the exploratory analyses, best described as a reticulated network. Furthermore, no model predicts the correlation between proximal parts of the condyloid and coronoid, which can exceed the correlations between proximal and distal parts of the same process. Additionally, no model predicts the correlation between molar alveolus and ramus and/or angular process, one of the highest correlations found in the FA component. That correlation contradicts the basic premise of all five developmental models, yet it should be anticipated from the epigenetic effects of mastication, possibly the primary morphogenetic process integrating the jaw coupling forces generated by muscle contraction with those experienced at teeth. | en_US |
dc.format.extent | 488817 bytes | |
dc.format.extent | 3109 bytes | |
dc.format.mimetype | application/pdf | |
dc.format.mimetype | text/plain | |
dc.publisher | Blackwell Publishing Inc | en_US |
dc.rights | Journal compilation © 2008 Blackwell Publishing Inc. | en_US |
dc.title | Modularity of the rodent mandible: Integrating bones, muscles, and teeth | en_US |
dc.type | Article | en_US |
dc.subject.hlbsecondlevel | Ecology and Evolutionary Biology | en_US |
dc.subject.hlbtoplevel | Science | en_US |
dc.description.peerreviewed | Peer Reviewed | en_US |
dc.contributor.affiliationum | Museum of Paleontology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationum | Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationum | Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationum | Museum of Zoology, University of Michigan, Ann Arbor, MI 48109, USA | en_US |
dc.contributor.affiliationother | Department of Biological Sciences, University of Tulsa, Tulsa, OK 74104, USA | en_US |
dc.identifier.pmid | 19021747 | en_US |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/73767/1/j.1525-142X.2008.00290.x.pdf | |
dc.identifier.doi | 10.1111/j.1525-142X.2008.00290.x | en_US |
dc.identifier.source | Evolution & Development | en_US |
dc.identifier.citedreference | Adams, D. C., Rohlf, F. J., and Slice, D. E. 2004. Geometric morphometrics: ten years of progress following the ‘revolution.’ Ital. J. Zool. 71: 5 – 16. | en_US |
dc.identifier.citedreference | Andresen, P. R., Bookstein, F. L., Conradsen, K., ErsbØll, B., Marsh, J., and Kreiborg, S. 2000. Surface-bounded growth modeling applied to human mandibles. IEEE Trans. Med. Imag. 19: 1053 – 1063. | en_US |
dc.identifier.citedreference | Atchley, W. R. 1983. A genetic analysis of the mandible and maxilla in the rat. J. Craniofac. Genet. Dev. Biol. 3: 409 – 422. | en_US |
dc.identifier.citedreference | Atchley, W. R. ( 1993 ). Genetic and developmental aspects of variability in the mammalian mandible. In J. Hanken and B. K. Hall (eds.). The Skull. University of Chicago Press, Chicago, pp. 207 – 247. | en_US |
dc.identifier.citedreference | Atchley, W. R., Cowley, D. E., Vogl, C., and McLellan, T. 1992. Evolutionary divergence, shape change, and genetic correlation structure in the rodent mandible. Syst. Biol. 41: 196 – 221. | en_US |
dc.identifier.citedreference | Atchley, W. R., and Hall, B. K. 1991. A model for development and evolution of complex morphological structures. Biol. Rev. Cambridge Phil. Soc. 66: 101 – 157. | en_US |
dc.identifier.citedreference | Atchley, W. R., Plummer, A. A., and Riska, B. 1985. Genetics of mandible form in the mouse. Genetics 111: 555 – 577. | en_US |
dc.identifier.citedreference | Auffray, J.-C., Alibert, P., Renaud, S., Orth, A., and Bonhomme, F. 1996. Fluctuating asymmetry in Mus musculus subspecific hybridization: traditional and procrustes comparative approaches. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice (eds.). Advance in Morphometrics. Nato ASI Series, Series A, Life Science. pp. 275 – 284. | en_US |
dc.identifier.citedreference | Badyaev, A. V., and Foresman, K. R. 2004. Evolution of morphological integration. I. Functional units channel stress-induced variation in shrew mandibles. Am. Natural. 163: 868 – 879. | en_US |
dc.identifier.citedreference | Badyaev, A. V., Foresman, K. R., and Fernandes, M. V. 2000. Stress and developmental stability: vegetation removal causes increased fluctuating asymmetry in shrews. Ecology 81: 336 – 345. | en_US |
dc.identifier.citedreference | Badyaev, A. V., Foresman, K. R., and Young, R. L. 2005. Evolution of morphological integration: developmental accommodation of stress-induced variation. Am. Natural. 166: 382 – 395. | en_US |
dc.identifier.citedreference | Bolker, J. A. 2000. Modularity in development and why it matters to evo-devo. Am. Zool. 40: 770 – 776. | en_US |
dc.identifier.citedreference | Bookstein, F. L. 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Med. Image Anal. 1: 97 – 118. | en_US |
dc.identifier.citedreference | Bookstein, F. L., Streissguth, A. P., Sampson, P. D., Connor, P. D., and Barr, H. M. 2002. Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage 15: 233 – 251. | en_US |
dc.identifier.citedreference | Burr, D. B., Robling, A. G., and Turner, C. H. 2002. Effects of biomechanical stress on bones in animals. Bone 30: 781 – 786. | en_US |
dc.identifier.citedreference | Carter, D. R., Van der Meulen, M. C. H., and Beaupre, G. S. 1996. Mechanical factors in bone growth and development. Bone 18: S5 – S10. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1982. Phenotypic, genetic, and environmental morphological integration in the cranium. Evolution 36: 499 – 516. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1984. Quantitative genetics and developmental constraints on evolution by selection. J. Theoret. Biol. 110: 155 – 171. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1995. Morphological integration in the saddle-back tamarin ( Saguinus fuscicollis ) cranium. Am. Natural. 145: 63 – 89. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 1996. Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44 – 50. | en_US |
dc.identifier.citedreference | Cheverud, J. M. 2004. Modular pleiotropic effects of quantitative trait loci on morphological traits. Modul. Dev. Evol. 132 – 153. | en_US |
dc.identifier.citedreference | Cheverud, J. M., Hartman, S. E., Richtsmeier, J. T., and Atchley, W. R. 1991. A quantitative genetic analysis of localized morphology in mandibles of inbred mice using finite-element scaling analysis. J. Craniofac. Genet. Dev. Biol. 11: 122 – 137. | en_US |
dc.identifier.citedreference | Dietz, E. J. 1983. Permutation tests for association between 2 distance matrices. Syst. Zool. 32: 21 – 26. | en_US |
dc.identifier.citedreference | Dow, M. M., and Cheverud, J. M. 1985. Comparison of cistance matrices in studies of population-structure and genetic microdifferentiation – Quadratic assignment. Am. J. Phys. Anthropol. 68: 367 – 373. | en_US |
dc.identifier.citedreference | Farris, J. S. 1969. On the cophenetic correlation coefficient. Syst. Zool. 18: 279 – 285. | en_US |
dc.identifier.citedreference | Gerhart, J., and Kirschner, M. 2007. The theory of facilitated variation. Proc. Natl. Acad. Sci. USA 104: 8582 – 8589. | en_US |
dc.identifier.citedreference | Goswami, A. 2006. Cranial modularity shifts during mammalian evolution. Am. Natural. 168: 270 – 280. | en_US |
dc.identifier.citedreference | Green, W. D. K. 1996. The thin-plate spline and images with curving features. In K. V. Mardia, C. A. Gill, and I. L. Dryden (eds.). Image Fusion and Shape Variability. University of Leeds Press, Leeds, pp. 79 – 87. | en_US |
dc.identifier.citedreference | Gunz, P., Mitteroecker, P., and Bookstein, F. L. 2005. Semilandmarks in three dimensions. In D. E. Slice (ed.). Modern Morphometrics in Physical Anthropology. Kluwer Academic/Plenum Publishers, New York, pp. 73 – 98. | en_US |
dc.identifier.citedreference | Hall, B. K. 2003. Unlocking the black box between genotype and phenotype: cell condensations as morphogenetic (modular) units. Biol. Phil. 18: 219 – 247. | en_US |
dc.identifier.citedreference | Hall, B. K., and Herring, S. W. 1990. Paralysis and growth of the musculoskeletal system in the embryonic chick. J. Morphol. 206: 45 – 56. | en_US |
dc.identifier.citedreference | Hall, B. K., and Miyake, T. 2000. All for one and one for all: condensations and the initiation of skeletal development. Bioessays 22: 138 – 147. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Dorval, C. J., Zelditch, M. L., and German, R. Z. 2004. Craniofacial variability and morphological integration in mice susceptible to cleft lip and palate. J. Anat. 205: 501 – 517. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Lieberman, D. E., Liu, W., Ford-Hutchinson, A. F., and Jirik, F. R. 2007a. Epigenetic interactions and the structure of phenotypic variation in the cranium. Evol. Dev. 9: 76 – 91. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Lieberman, D. E., Young, N. M., Parsons, T., and Wat, S. 2007b. Evolution of covariance in the mammalian skull. Novartis Found Symp. 284: 164 – 185; discussion 185–190. | en_US |
dc.identifier.citedreference | HallgrÍmsson, B., Willmore, K., and Hall, B. K. 2002. Canalization, developmental stability, and morphological integration in primate limbs. Yearbook Phys. Anthropol. 45: 131 – 158. | en_US |
dc.identifier.citedreference | Harris, S. E., et al. 2004. Mapping expression patterns of mechanically responsive genes, DMP1 and MEPE, in osteocytes using the mouse ulnae: correlation to predicted local strain. J. Bone Mineral Res. 19: S28 – S28. | en_US |
dc.identifier.citedreference | Henderson, J. H., Longaker, M. T., and Carter, D. R. 2004. Sutural bone deposition rate and strain magnitude during cranial development. Bone 34: 271 – 280. | en_US |
dc.identifier.citedreference | Herring, S. W. 1993. Formation of the vertebrate face: epigenetic and functional influences. Am. Zool. 33: 472 – 483. | en_US |
dc.identifier.citedreference | Herring, S. W. 1994. Development of functional interactions between skeletal and muscular systems. In B. K. Hall (ed.). Bone Vol. 9: Differentiation and Morphogenesis of Bone. CRC Press Inc., Boca Raton, pp. 165 – 191. | en_US |
dc.identifier.citedreference | Herring, S. W., and Lakars, T. C. 1981. Craniofacial development in the absence of muscle contraction. J. craniofac. Genet. Dev. Biol. 1: 341 – 357. | en_US |
dc.identifier.citedreference | Hood, G. M. 2008. PopTools version 3.0.3. URL: http://www.cse.csiro.au/poptools | en_US |
dc.identifier.citedreference | Jojic, V., Blagojevic, J., Ivanovic, A., Bugarski-Stanojevic, V., and Vujosevic, M. 2007. Morphological integration of the mandible in yellow-necked field mice: the effects of B chromosomes. J. Mammal. 88: 689 – 695. | en_US |
dc.identifier.citedreference | Kaufman, L., and Rousseeuw, P. 1990. Finding Groups in Data, an Introduction to Cluster Analysis. Wiley, New York. | en_US |
dc.identifier.citedreference | Klingenberg, C. P. 2004. Integration, modules, and development – Molecules to morphology to evolution. Phenotypic Integration: Studying the Ecology and Evolution of Complex Phenotypes. Oxford University Press, Oxford, pp. 213 – 230. | en_US |
dc.identifier.citedreference | Klingenberg, C. P. 2005. Developmental constraints, modules, and evolvability. In B. Hallgrimsson and B. K. Hall (eds.). Variation: A Central Concept in Biology. Elsevier Academic Press, San Diego, pp. 219 – 247. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Badyaev, A. V., Sowry, S. M., and Beckwith, N. J. 2001. Inferring developmental modularity from morphological integration: analysis of individual variation and asymmetry in bumblebee wings. Am. Natural. 157: 11 – 23. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Barluenga, M., and Meyer, A. 2002. Shape analysis of symmetric structures: quantifying variation among individuals and asymmetry. Evolution 56: 1909 – 1920. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Leamy, L. J., and Cheverud, J. M. 2004. Integration and modularity of quantitative trait locus effects on geometric shape in the mouse mandible. Genetics 166: 1909 – 1921. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., and McIntyre, G. S. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with procrustes methods. Evolution 52: 1363 – 1375. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., Mebus, K., and Auffray, J. C. 2003. Developmental integration in a complex morphological structure: how distinct are the modules in the mouse mandible? Evol. Dev. 5: 522 – 531. | en_US |
dc.identifier.citedreference | Klingenberg, C. P., and Zaklan, S. D. 2000. Morphological integration between developmental compartments in the Drosophila wing. Evolution 54: 1273 – 1285. | en_US |
dc.identifier.citedreference | Lande, R. 1980. The genetic covariance between characters maintained by pleiotropic mutations. Genetics 94: 203 – 215. | en_US |
dc.identifier.citedreference | Leamy, L. 1984. Morphometric studies in inbred and hybrid house mice. 5. Directional and fluctuating asymmetry. Am. Natural. 123: 579 – 593. | en_US |
dc.identifier.citedreference | Maechler, M., Rousseeuw, P., Struyf, A., and Hubert, M. 2005. Cluster analysis basics and extensions. | en_US |
dc.identifier.citedreference | Magwene, P. M. ( 2001 ). New tools for studying integration and modularity. Evolution 55: 1734 – 1745. | en_US |
dc.identifier.citedreference | Makarenkov, U. 2000. T-Rex, ver. 4.0a1. URL: http://www.labunix.uqam.ca/~makarenv/trex.html | en_US |
dc.identifier.citedreference | Makarenkov, V., and Legendre, P. 2004. From a phylogenetic tree to a reticulated network. J. Comput. Biol. 11: 195 – 212. | en_US |
dc.identifier.citedreference | Makarenkov, V., Legendre, P., and Desdevises, Y. 2004. Modelling phylogenetic relationships using reticulated networks. Zool. Scripta 33: 89 – 96. | en_US |
dc.identifier.citedreference | Marquez, E. 2007a. Coriandis. URL: http://www-personal.umich.edu/~emarquez/morph/index.html | en_US |
dc.identifier.citedreference | Marquez, E. 2007b. Sage, ver. 1.03. URL: http://www-personal.umich.edu/~emarquez/morph/index.html | en_US |
dc.identifier.citedreference | Mezey, J. G., Cheverud, J. M., and Wagner, G. P. 2000. Is the genotype-phenotype map modular: a statistical approach using mouse quantitative trait loci data. Genetics 156: 305 – 311. | en_US |
dc.identifier.citedreference | Monteiro, L. R., Bonato, V., and dos Reis, S. F. 2005. Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evol. Dev. 7: 429 – 439. | en_US |
dc.identifier.citedreference | Myers, P., Lundrigan, B. L., Gillespie, B. W., and Zelditch, M. L. 1996. Phenotypic plasticity in skull and dental morphology in the prairie deer mouse ( Peromyscus maniculatus bairdii ). J. Morphol. 229: 229 – 237. | en_US |
dc.identifier.citedreference | Needham, J. 1933. On the dissociability of the fundamental process in ontogenesis. Biol. Rev. Cambridge Phil. Soc. 8: 180 – 223. | en_US |
dc.identifier.citedreference | Palmer, A. R., and Strobeck, C. 1986. Fluctuating asymmetry: measurement, analysis, patterns. Ann. Rev. Ecol. Syst. 17: 391 – 421. | en_US |
dc.identifier.citedreference | Pavlicev, M., Kenney-Hunt, J. P., Norgard, E. A., Roseman, C. C., Wolf, J. B., and Cheverud, J. M. 2008. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution 62: 199 – 213. | en_US |
dc.identifier.citedreference | R Development Core Team. 2008. R: A language and environment for statistical computing version 2.6.2. R Foundation for Statistical Computing Vienna, Austria. URL: http://www.r-project.org. | en_US |
dc.identifier.citedreference | Raff, R. A. 1996. The Shape of Life: Genes, Development and the Evolution of Animal Form. University of Chicago Press, Chicago. | en_US |
dc.identifier.citedreference | Richtsmeier, J. T., et al. 2006. Phenotypic integration of neurocranium and brain. J. Exp. Zool. Part B-Mol. Dev. Evol. 306B: 360 – 378. | en_US |
dc.identifier.citedreference | Rohlf, F. J. 2006. tpsDig2.1. State University of New York, Stony Brook. URL: http://life.bio.sunysb.edu/morph | en_US |
dc.identifier.citedreference | Rot-Nikcevic, I., Downing, K. J., Hall, B. K., and Kablar, B. 2007. Development of the mouse mandibles and clavicles in the absence of skeletal myogenesis. Histol. Histopathol. 22: 51 – 60. | en_US |
dc.identifier.citedreference | Rot-Nikcevic, I., et al. 2006. Myf5(−/−): MyoD(−/−) amyogenic fetuses reveal the importance of early contraction and static loading by striated muscle in mouse skeletogenesis. Dev. Genes Evol. 216: 1 – 9. | en_US |
dc.identifier.citedreference | Sampson, P. D., Bookstein, F. L., Sheehan, H., and Bolson, E. L. 1996. Eigenshape analysis of left ventricular outlines from contrast ventriculograms. In L. F. Marcus, M. Corti, A. Loy, G. J. P. Naylor, and D. E. Slice (eds.). Advances in Morphometrics. Nato ASI series, Series A, Life Science. New York, pp. 131 – 152. | en_US |
dc.identifier.citedreference | Sattath, S., and Tversky, A. 1977. Additive similarity trees. Psychometrika 42: 319 – 345. | en_US |
dc.identifier.citedreference | Sheets, H. D. 2003. Semiland. URL: http://www.canisius3.edu/~sheets/morphosoft.html. | en_US |
dc.identifier.citedreference | Sheets, H. D., Kim, K., and Mitchell, C. E. 2004. A combined landmark and outline-based approach to ontogenetic shape change in the Ordovician trilobite Triarthrus becki. In A. M. T. Elewa (ed.). Morphometrics: Applications in Biology and Paleontology. Springer, New York, pp. 67 – 82. | en_US |
dc.identifier.citedreference | Sneath, P. H. A., and Sokal, R. R. 1973. Numerical Taxonomy. W. H. Freeman, San Francisco. | en_US |
dc.identifier.citedreference | Wagner, G. P. 1988. The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. J. Evol. Biol. 1: 45 – 66. | en_US |
dc.identifier.citedreference | Wagner, G. P. 1996. Homologues, natural kinds and the evolution of modularity. Am. Zool. 36: 36 – 43. | en_US |
dc.identifier.citedreference | Wagner, G. P., and Altenberg, L. 1996. Complex adaptations and the evolution of evolvability. Evolution 50: 967 – 976. | en_US |
dc.identifier.citedreference | Wagner, G. P., Mezey, J. G., and Calabretta, R. 2005. Natural selection and the origin of modules. In W. Callebaut and D. Rasskin-Gutman (eds.). Modularity: Understanding the Development and Evolution of Natural Complex Systems. MIT Press, Cambridge, MA, pp. 33 – 50. | en_US |
dc.identifier.citedreference | Wagner, G. P., Pavlicev, M., and Cheverud, J. M. 2007. The road to modularity. Nat. Rev. Genet. 8: 921 – 931. | en_US |
dc.identifier.citedreference | Ward, J. H. 1963. Hierarchical grouping to optimize an objective function. J. Am. Statis. Assoc. 58: 236 – 244. | en_US |
dc.identifier.citedreference | Wilkinson, L. 2000. Systat version 10. SPSS Inc., Chicago, IL. | en_US |
dc.identifier.citedreference | Willmore, K. E., Zelditch, M. L., Young, N., Ah-Seng, A., Lozanoff, S., and Hallgrimsson, B. 2006. Canalization and developmental stability in the brachyrrhine mouse. J. Anat. 208: 361 – 372. | en_US |
dc.identifier.citedreference | Wolf, J. B., Frankino, W. A., Agrawal, A. F., Brodie, E. D., and Moore, A. J. 2001. Developmental interactions and the constituents of quantitative variation. Evolution 55: 232 – 245. | en_US |
dc.identifier.citedreference | Young, N. M., and Hallgrimsson, B. 2005. Serial homology and the evolution of mammalian limb covariation structure. Evolution 59: 2691 – 2704. | en_US |
dc.identifier.citedreference | Young, R. L., and Badyaev, A. V. 2006. Evolutionary persistence of phenotypic integration: influence of developmental and functional relationships on complex trait evolution. Evolution 60: 1291 – 1299. | en_US |
dc.identifier.citedreference | Zelditch, M. L., and Carmichael, A. C. 1989. Ontogenetic variation in patterns of developmental and functional integration in skulls of Sigmodon fulviventer. Evolution 43: 814 – 824. | en_US |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.