Show simple item record

Structural Features of Vps35p Involved in Interaction with Other Subunits of the Retromer Complex

dc.contributor.authorRestrepo, Ricardoen_US
dc.contributor.authorZhao, Xiangen_US
dc.contributor.authorPeter, Haralden_US
dc.contributor.authorZhang, Bao-yanen_US
dc.contributor.authorArvan, Peteren_US
dc.contributor.authorNothwehr, Steven F.en_US
dc.date.accessioned2010-06-01T20:41:05Z
dc.date.available2010-06-01T20:41:05Z
dc.date.issued2007-12en_US
dc.identifier.citationRestrepo, Ricardo; Zhao, Xiang; Peter, Harald; Zhang, Bao-yan; Arvan, Peter; Nothwehr, Steven F. (2007). "Structural Features of Vps35p Involved in Interaction with Other Subunits of the Retromer Complex." Traffic 8(12): 1841-1853. <http://hdl.handle.net/2027.42/73789>en_US
dc.identifier.issn1398-9219en_US
dc.identifier.issn1600-0854en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73789
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=17892535&dopt=citationen_US
dc.format.extent715070 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights2007 The Authors Journal compilationen_US
dc.subject.otherEndosomeen_US
dc.subject.otherProtein Sortingen_US
dc.subject.otherRetromeren_US
dc.subject.otherSaccharomyces Cerevisiaeen_US
dc.subject.otherTrans Golgi Networken_US
dc.subject.otherVesicle Coaten_US
dc.titleStructural Features of Vps35p Involved in Interaction with Other Subunits of the Retromer Complexen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDivision of Metabolism, Endocrinology & Diabetes, University of Michigan, 5560 MSRB2, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDivision of Biological Sciences, 401 Tucker Hall, University of Missouri, Columbia, MO 65211, USAen_US
dc.contributor.affiliationotherInstitute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germanyen_US
dc.identifier.pmid17892535en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73789/1/j.1600-0854.2007.00659.x.pdf
dc.identifier.doi10.1111/j.1600-0854.2007.00659.xen_US
dc.identifier.sourceTrafficen_US
dc.identifier.citedreferenceCostaguta G, Stefan CJ, Bensen ES, Emr SD, Payne GS. Yeast Gga coat proteins function with clathrin in Golgi to endosome transport. Mol Biol Cell 2001; 12: 1885 – 1896.en_US
dc.identifier.citedreferenceFoote C, Nothwehr SF. The clathrin adaptor complex 1 directly binds to a sorting signal in Ste13p to reduce the rate of its trafficking to the late endosome of yeast. J Cell Biol 2006; 173: 615 – 626.en_US
dc.identifier.citedreferenceNothwehr SF, Roberts CJ, Stevens TH. Membrane protein retention in the yeast Golgi apparatus: dipeptidyl aminopeptidase A is retained by a cytoplasmic signal containing aromatic residues. J Cell Biol 1993; 121: 1197 – 1209.en_US
dc.identifier.citedreferenceBryant NJ, Stevens TH. Two separate signals act independently to localize a yeast late Golgi membrane protein through a combination of retrieval and retention. J Cell Biol 1997; 136: 287 – 297.en_US
dc.identifier.citedreferenceCooper AA, Stevens TH. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 1996; 133: 529 – 541.en_US
dc.identifier.citedreferenceCereghino JL, Marcusson EG, Emr SD. The cytoplasmic tail domain of the vacuolar protein sorting receptor Vps10p and a subset of VPS gene products regulate receptor stability, function, and localization. Mol Biol Cell 1995; 6: 1089 – 1102.en_US
dc.identifier.citedreferenceWilcox CA, Redding K, Wright R, Fuller RS. Mutation of a tyrosine localization signal in the cytosolic tail of yeast Kex2 protease disrupts Golgi retention and results in default transport to the vacuole. Mol Biol Cell 1992; 3: 1353 – 1371.en_US
dc.identifier.citedreferenceSeaman MNJ, Marcusson EG, Cereghino JL, Emr SD. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the Vps29, Vps30, and Vps35 gene products. J Cell Biol 1997; 137: 79 – 92.en_US
dc.identifier.citedreferenceSeaman MNJ, McCaffery JM, Emr SD. A membrane coat complex essential for endosome-to-Golgi retrograde transport in yeast. J Cell Biol 1998; 142: 665 – 681.en_US
dc.identifier.citedreferenceNothwehr SF, Hindes AE. The yeast VPS5/GRD2 gene encodes a sorting nexin-1-like protein required for localizing membrane proteins to the late Golgi. J Cell Sci 1997; 110: 1063 – 1072.en_US
dc.identifier.citedreferenceHorazdovsky BF, Davies BA, Seaman MNJ, McLaughlin SA, Yoon S, Emr SD. A sorting nexin-1 homologue, Vps5p, forms a complex with Vps17p and is required for recycling the vacuolar protein-sorting receptor. Mol Biol Cell 1997; 8: 1529 – 1541.en_US
dc.identifier.citedreferenceNothwehr SF, Bruinsma P, Strawn LS. Distinct domains within Vps35p mediate the retrieval of two different cargo proteins from the yeast prevacuolar/endosomal compartment. Mol Biol Cell 1999; 10: 875 – 890.en_US
dc.identifier.citedreferenceVoos W, Stevens TH. Retrieval of resident late-Golgi membrane proteins from the prevacuolar compartment of Saccharomyces cerevisiae is dependent on the function of Grd19p. J Cell Biol 1998; 140: 577 – 590.en_US
dc.identifier.citedreferenceStrochlic TI, Setty TG, Sitaram A, Burd CG. Grd19/Snx3p functions as a cargo-specific adapter for retromer-dependent endocytic recycling. J Cell Biol 2007; 177: 115 – 125.en_US
dc.identifier.citedreferenceHaft CR, Sierra MDL, Bafford R, Lesniak MA, Barr VA, Taylor SI. Human orthologs of yeast vacuolar protein sorting proteins Vps26, 29, and 35: assembly into multimeric complexes. Mol Biol Cell 2000; 11: 4105 – 4116.en_US
dc.identifier.citedreferenceKurten RC, Cadena DL, Gill GN. Enhanced degradation of EGF receptors by a sorting nexin, SNX1. Science 1996; 272: 1008 – 1010.en_US
dc.identifier.citedreferenceArighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 2004; 165: 123 – 133.en_US
dc.identifier.citedreferenceSeaman MN. Cargo-selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol 2004; 165: 111 – 122.en_US
dc.identifier.citedreferenceVerges M, Luton F, Gruber C, Tiemann F, Reinders LG, Huang L, Burlingame AL, Haft CR, Mostov KE. The mammalian retromer regulates transcytosis of the polymeric immunoglobulin receptor. Nat Cell Biol 2004; 6: 763 – 769.en_US
dc.identifier.citedreferenceRojas R, Satoshi K, Haft CR, Bonifacino JS. Interchangeable but essential function of SNX1 and SNX2 in the association of retromer with endosomes and the trafficking of mannose 6-phosphate receptors. Mol Cell Biol 2007; 27: 1112 – 1124.en_US
dc.identifier.citedreferenceNothwehr SF, Ha S-A, Bruinsma P. Sorting of yeast membrane proteins into an endosome-to-Golgi pathway involves direct interaction of their cytosolic domains with Vps35p. J Cell Biol 2000; 151: 297 – 309.en_US
dc.identifier.citedreferenceBurda P, Padilla SM, Sarkar S, Emr SD. Retromer function in endosome-to-Golgi retrograde transport is regulated by the yeast Vps34 PtdIns 3-kinase. J Cell Sci 2002; 115: 3889 – 3900.en_US
dc.identifier.citedreferenceCozier GE, Carlton J, McGregor AH, Gleeson PA, Teasdale RD, Mellor H, Cullen PJ. The phox homology (PX) domain-dependent, 3-phosphoinositide-mediated association of sorting nexin-1 with an early sorting endosomal compartment is required for its ability to regulate epidermal growth factor receptor degradation. J Biol Chem 2002; 277: 48730 – 48736.en_US
dc.identifier.citedreferenceCarlton J, Bujny M, Peter BJ, Oorschot VM, Rutherford A, Mellor H, Klumperman J, McMahon HT, Cullen PJ. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high-curvature membranes and 3-phosphoinositides. Curr Biol 2004; 14: 1791 – 1800.en_US
dc.identifier.citedreferenceCollins BM, Skinner CF, Watson PJ, Seaman MN, Owen DJ. Vps29 has a phosphoesterase fold that acts as a protein interaction scaffold for retromer assembly. Nat Struct Mol Biol 2005; 12: 594 – 602.en_US
dc.identifier.citedreferenceReddy JV, Seaman MNJ. Vps26p, a component of retromer, directs the interactions of Vps35p in endosome-to-Golgi retrieval. Mol Biol Cell 2001; 12: 3242 – 3256.en_US
dc.identifier.citedreferenceZhao X, Nothwehr SF, Lara-Lemus R, Zhang B, Peter H, Arvan P. Mammalian Vps35 behaves as a dominant negative protein in yeast: mutation of a conserved PRLYL motif alters protein function and localization. Traffic 2007; doi: 10.1111/j.1600-0854.2007.00658.x.en_US
dc.identifier.citedreferenceGokool S, Tattersall D, Reddy JV, Seaman MN. Identification of a conserved motif required for Vps35p/Vps26p interaction and assembly of the retromer complex. Biochem J 2007; ( In press ).en_US
dc.identifier.citedreferenceShi H, Rojas R, Bonifacino JS, Hurley JH. The retromer subunit Vps26 has an arrestin fold and binds Vps35 through its c-terminal domain. Nat Struct Mol Biol 2006; 12: 540 – 548.en_US
dc.identifier.citedreferenceMiller WE, Lefkowitz RJ. Expanding roles for Β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 2001; 13: 139 – 145.en_US
dc.identifier.citedreferenceKurten RC, Eddington AD, Chowdhury P, Smith RD, Davidson AD, Shank BB. Self-assembly and binding of a sorting nexin to sorting endosomes. J Cell Sci 2001; 114: 1743 – 1756.en_US
dc.identifier.citedreferenceAusebel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Struhl K, Smith JA. Current Protocols in Molecular Biology. USA: John Wiley & Sons, Inc.; 2000.en_US
dc.identifier.citedreferenceNothwehr SF, Bryant NJ, Stevens TH. The newly identified yeast GRD genes are required for retention of late-Golgi membrane proteins. Mol Cell Biol 1996; 16: 2700 – 2707.en_US
dc.identifier.citedreferenceSpelbrink RG, Nothwehr SF. The yeast GRD20 gene is required for protein sorting in the trans -Golgi network/endosomal system and for polarization of the actin cytoskeleton. Mol Biol Cell 1999; 10: 4263 – 4281.en_US
dc.identifier.citedreferenceVater CA, Raymond CK, Ekena K, Howald-Stevenson I, Stevens TH. The VPS1 protein, a homolog of dynamin required for vacuolar protein sorting in Saccharomyces cerevisiae, is a GTPase with two functionally separable domains. J Cell Biol 1992; 119: 773 – 786.en_US
dc.identifier.citedreferenceOrlean P, Kuranda MJ, Albright CF. Analysis of glycoproteins from Saccharomyces cerevisiae. Methods Enzymol 1991; 194: 682 – 697.en_US
dc.identifier.citedreferenceRoberts CJ, Raymond CK, Yamashiro CT, Stevens TH. Methods for studying the yeast vacuole. Methods Enzymol 1991; 194: 644 – 661.en_US
dc.identifier.citedreferenceAmmerer G, Hunter CP, Rothman JH, Saari GC, Valls LA, Stevens TH. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol 1986; 6: 2490 – 2499.en_US
dc.identifier.citedreferenceNothwehr SF, Conibear E, Stevens TH. Golgi and vacuolar membrane proteins reach the vacuole in vps1 mutant yeast cells via the plasma membrane. J Cell Biol 1995; 129: 35 – 46.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.