Show simple item record

Can we improve on nature?“Super molecules” of factor VIII

dc.contributor.authorKaufman, R. J.en_US
dc.contributor.authorPipe, Steven W.en_US
dc.date.accessioned2010-06-01T20:45:08Z
dc.date.available2010-06-01T20:45:08Z
dc.date.issued1998-07en_US
dc.identifier.citationKAUFMAN, R. J . ; PIPE, S. W . (1998). "Can we improve on nature?“Super molecules” of factor VIII." Haemophilia 4(4): 370-379. <http://hdl.handle.net/2027.42/73854>en_US
dc.identifier.issn1351-8216en_US
dc.identifier.issn1365-2516en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73854
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=9873757&dopt=citationen_US
dc.description.abstractTreatment of heamophilia A requires frequent infusion of plasma- or recombinant-derived factor VIII. This regimen is limited due to the high cost and inconvenient access to peripheral veins. In addition, patients frequently develop inhibitory antibodies that limit available therapeutic regimens. Two major advances in factor VIII research over the past 15 years were the ability to isolate homogeneous preparations of factor VIII and the isolation of the factor VIII gene that provided for a detailed biochemical and structural characterization of the factor VIII molecule. With an increased understanding of the requirements for factor VIII function, studies have attempted to produce improved factor VIII molecules for replacement therapy. These findings have produced forms of factor VIII that are more efficiently produced, that are less immunogenic, and that have higher specific activity. The future will see the engineering of novel factor VIII molecules with increased therapeutic efficiency while minimizing inhibitor antibody development. In addition, there are now structural models of factor VIII available that should in the future direct development of novel peptidomimetics that may eventually overcome the requirement for replacement therapy with factor VIII protein.en_US
dc.format.extent1645284 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Science Ltden_US
dc.rights1998 Blackwell Science Ltden_US
dc.subject.otherThrombinen_US
dc.subject.otherFactor VIIIen_US
dc.subject.otherActivated Protein Cen_US
dc.subject.otherInhibitor Antibodiesen_US
dc.titleCan we improve on nature?“Super molecules” of factor VIIIen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelOncology and Hematologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumHoward Hughes Medical Institute and Departments of Biological Chemistry and Pediatrics, University of Michigan Medical Center, Ann Arbor, MI, USAen_US
dc.identifier.pmid9873757en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73854/1/j.1365-2516.1998.440370.x.pdf
dc.identifier.doi10.1046/j.1365-2516.1998.440370.xen_US
dc.identifier.sourceHaemophiliaen_US
dc.identifier.citedreferencePatek AJ, Taylor FHL. Hemophilia II. Some properties of a substance obtained from normal human plasma effective in accelerating the coagulation of hemophilic blood. J Clin Invest 1937; 16: 113 – 24.en_US
dc.identifier.citedreferenceVehar GA, Keyt B, Eaton D, et al. Structure of human factor VIII. Nature 1984; 312: 337 – 42.en_US
dc.identifier.citedreferenceToole JJ, Knopf JL, Wozney JM, et al. Molecular cloning of a cDNA encoding human antihaemophilic factor. Nature 1984; 312: 342 – 7.en_US
dc.identifier.citedreferenceJenny RJ, Pittman DD, Toole JJ, et al. Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 1987; 84: 4846 – 50.en_US
dc.identifier.citedreferenceKane WH, Davie EW. Cloning of a cDNA coding for human factor V, a blood coagulation factor homologous to factor VIII andceruloplasmin. Proc Natl Acad Sci USA 1986; 83(18): 6800 – 4.en_US
dc.identifier.citedreferenceOrtel TL, Takahashi N, Putnam FW. Structural model of human ceruloplasmin based on internal triplication, hydrophilic/hydrophobic character, and secondary structure of domains. Proc Natl Acad Sci USA 1984; 81: 4761 – 5.en_US
dc.identifier.citedreferenceStubbs JD, Lekutis C, Singer KL, et al. cDNA cloning of a mouse mammary epithelial cell surface protein reveals the existence of epidermal growth factor-like domains linked to factor VIII-like sequences. Proc Natl Acad Sci USA 1990; 87: 8417 – 21.en_US
dc.identifier.citedreferenceGitschier J, Wood WI, Goralka TM, et al. Characterization of the human factor VIII gene. Nature 1984; 312: 326 – 30.en_US
dc.identifier.citedreferenceCripe LD, Moore KD, Kane WH. Structure of the gene for human coagulation factor V. Biochemistry 1992; 31: 3777 – 85.en_US
dc.identifier.citedreferenceRosendaal FR, Varekamp I, Smit C, et al. Mortality and causes of death in Dutch haemophiliacs, 1973–86. Br J Haematol 1989; 71: 71 – 6.en_US
dc.identifier.citedreferenceKamphuisen PW, Eikenboom JCJ, Vos HL, Blann AD, Bertina RM, Rosendaal FR. High levels of factor VIII antigen are an important risk factor of deep-vein thrombosis. Blood 1997; 90: 398a.en_US
dc.identifier.citedreferenceLollar P, Parker CG. Stoichiometry of the porcine factor VIII-von Willebrand factor association. J Biol Chem 1987; 262: 17572 – 6.en_US
dc.identifier.citedreferenceZucker MB, Soberano ME, Johnson AJ, Fulton AJ, Kowalski S, Adler M. The in vitro association of antihemophilic factor and von Willebrand factor. Thromb Haemost 1983; 49: 37 – 41.en_US
dc.identifier.citedreferenceNesheim ME, Pittman DD, Wang JH, Slonosky D, Kaufman RJ. The binding of 35S-labeled recombinant factor VIII to activated and unactivated human platelets. J Biol Chem 1988; 263: 16467 – 70.en_US
dc.identifier.citedreferenceHamer RJ, Koedam JA, Beeser-Visser NH, Bertina RM, van Mourik JA, Sixma JJ. Factor VIII binds to von Willebrand factor via its Mr-80,000 light chain. Eur J Biochem 1987; 166: 37 – 43.en_US
dc.identifier.citedreferenceLeyte A, Verbeet MP, Brodniewicz-Proba T, van Mourik JA, Mertens K. The interaction between human blood-coagulation factor VIII and von Willebrand factor. Characterization of a high-affinity binding site on factor VIII. Biochem J 1989; 257: 679 – 83.en_US
dc.identifier.citedreferenceWeiss HJ, Sussman II, Hoyer LW. Stabilization of factor VIII in plasma by the von Willebrand factor. Studies on posttransfusion and dissociated factor VIII and in patients with von Willebrand's disease. J Clin Invest 1977; 60: 390 – 404.en_US
dc.identifier.citedreferenceMannucci PM, Tenconi PM, Castaman G, Rodeghiero F. Comparison of four virus-inactivated plasma concentrates for treatment of severe von Willebrand disease: a cross-over randomized trial. Blood 1992; 79: 3130 – 7.en_US
dc.identifier.citedreferenceTuddenham EG, Lane RS, Rotblat F, et al. Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand's disease. Br J Haematol 1982; 52: 259 – 67.en_US
dc.identifier.citedreferenceDouglas AS. Antihemophilic globulin assay following plasma infusion in hemophilia. J Lab Clin Med 1958; 51: 850 – 9.en_US
dc.identifier.citedreferenceOver J, Sixma JJ, Bruine MH, et al. Survival of 125 iodine-labeled factor VIII in normals and patients with classic hemophilia. Observations on the heterogeneity of human factor VIII. J Clin Invest 1978; 62: 223 – 34.en_US
dc.identifier.citedreferenceBrinkhous KM, Sandberg H, Garris JB, et al. Purified human factor VIII procoagulant protein: comparative hemostatic response after infusions into hemophilic and von Willebrand disease dogs. Proc Natl Acad Sci USA 1985; 82: 8752 – 6.en_US
dc.identifier.citedreferenceKoedam JA. Interaction between factor VIII. Thesis. The University of Utrecht, The Netherlands, 1989.en_US
dc.identifier.citedreferenceHamer RJ, Koedam JA, Beeser-Visser NH, Sixma JJ. The effect of thrombin on the complex between factor VIII and von Willebrand factor. Eur J Biochem 1987; 167: 253 – 9.en_US
dc.identifier.citedreferencePittman DD, Alderman EA, Tomkinson KN, Wang JH, Giles AR, Kaufman RJ. Biochemical, immunological, and in vivo functional characterization of B-domain deleted factor VIII. Blood 1993; 81: 2925 – 35.en_US
dc.identifier.citedreferenceKoedam JA, Meijers JC, Sixma JJ, Bouma BN. Inactivation of human factor VIII by activated protein C. Cofactor activity of protein S and protective effect of von Willebrand factor. J Clin Invest 1988; 82 ( 4 ): 1236 – 43.en_US
dc.identifier.citedreferenceFay PJ, Coumans JV, Walker FJ. von Willebrand factor mediates protection of factor VIII from activated protein C-catalyzed inactivation. J Biol Chem 1991; 266 ( 4 ): 2172 – 7.en_US
dc.identifier.citedreferenceAndersson L-O, Brown JE. Interaction of factor VIII-von Willebrand factor with phospholipid vesicles. Biochem J 1981; 200: 161 – 7.en_US
dc.identifier.citedreferenceLajmonovich A, Hudry-Clergeon G, Freyssinet J-M, Marguerie G. Human Factor VIII procoagulant activity and phospholipid interaction. Biochim Biophys Acta 1981; 678: 123 – 36.en_US
dc.identifier.citedreferenceKaufman RJ, Wasley LC, Dorner AJ. Synthesis processing and secretion of factor VIII expressed in mammalian Cells. J Biol Chem 1988; 263: 6352 – 62.en_US
dc.identifier.citedreferenceKaufman RJ, Wasley LC, Davies MV, Wise RJ, Israel DI. The effect of von Willebrand factor co-expression on the synthesis and secretion of factor VIII in Chinese hamster ovary cells. Mol Cell Biol 1989; 9: 1233 – 42.en_US
dc.identifier.citedreferenceWise RJ, Dorner AJ, Krane M, Pittman DD, Kaufman RJ. The role of von Willebrand factor multimerization and propeptide cleavage in the binding and stabilization of factor VIII. J Biol Chem 1991; 266: 21948 – 55.en_US
dc.identifier.citedreferenceFoster PA, Fulcher CA, Houghten RA, Zimmerman TS. An immunogenic region with amino acid residues Va11670-Glu1684 of the factor VIII light chain induces antibodies which inhibit binding of factor VIII to von Willebrand factor. J Biol Chem 1988; 263: 5230 – 4.en_US
dc.identifier.citedreferenceLollar P, Hill-Eubanks DC, Parker CG. Association of the factor VIII light chain with von Willebrand factor. J Biol Chem 1988; 263: 10451 – 5.en_US
dc.identifier.citedreferenceSaenko EL, Shima M, Rajalakshmi KJ, Scandella D. A role for the C2 domain of factor VIII in binding to von Willebrand factor. J Biol Chem 1994; 269: 11601 – 5.en_US
dc.identifier.citedreferenceSaenko EL, Scandella D. The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 1997; 272: 18007 – 14.en_US
dc.identifier.citedreferenceFoster PA, Fulcher CA, Marti T, Titani K, Zimmerman TS. A major factor VIII binding domain resides within the amino terminal 272 amino acid residues of von Willebrand factor. J Biol Chem 1987; 262: 8443 – 6.en_US
dc.identifier.citedreferenceBahou WH, Ginsburg D, Sikkink R, Litwiller R, Fass DN. A monoclonal antibody to von Willebrand factor (vWF) inhibits factor VIII binding. J Clin Invest 1989; 84: 56 – 61.en_US
dc.identifier.citedreferenceTakahashi Y, Kalafatis M, Girma JP, Sewerin K, Andersson LO, Meyer D. Localization of a factor VIII binding domain on a 34 kilodalton fragment of the N-terminal portion of von Willebrand factor. Blood 1987; 70: 1679 – 82.en_US
dc.identifier.citedreferenceEaton D, Rodriguez H, Vehar GA. Proteolytic processing of human factor VIII. Coorelation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 1986; 25 ( 2 ): 505 – 12.en_US
dc.identifier.citedreferenceFay PJ, Anderson MT, Chavin SI, Marder VJ. The size of human factor VIII heterodimers and the effects produced by thrombin. Biochim Biophys Acta 1986; 871: 268 – 78.en_US
dc.identifier.citedreferenceFulcher CA, Roberts JR, Zimmerman TS. Thrombin proteolysis of purified factor VIII procoagulant protein: Correlation of activation with generation of a specific polypeptide. Blood 1983; 61: 807 – 11.en_US
dc.identifier.citedreferenceLollar P, Parker CG. Subunit structure of thrombin-activated porcine factor VIII. Biochemistry 1987; 28: 666 – 74.en_US
dc.identifier.citedreferenceFay PJ, Haidaris PJ, Smudzin TM. Human factor VIIIa subunit structure. J Biol Chem 1991; 266: 8957 – 62.en_US
dc.identifier.citedreferencePittman DD, Millenssen M, Bauer K, Kaufman RJ. The A2 domain of human recombinant derived factor VIII is required for procoagulant activity but not for thrombin cleavage. Blood 1991; 79: 389 – 97.en_US
dc.identifier.citedreferenceFulcher CA, Gardiner JE, Griffin JH, Zimmerman TS. Proteolytic inactivation of human factor VIII procoagulant protein by activated protein C and its analogy with factor V. Blood 1984; 63: 486 – 9.en_US
dc.identifier.citedreferenceFay PJ, Smudzin TM, Walker FJ. Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem 1991; 266: 20139 – 45.en_US
dc.identifier.citedreferenceGriffin JH, Evatt B, Zimmerman TS, Kleiss A, Wideman C. Deficiency of protein C in congenital thrombolic disease. J Clin Invest 1981; 68: 1370 – 3.en_US
dc.identifier.citedreferenceBertina RM, Broekmans AW, van der Linden IK, Mertens K. Protein C deficiency in a Dutch family with thrombolic disease. Thromb Haemost 1982; 48: 1 – 5.en_US
dc.identifier.citedreferenceHultin MB, Jesty J. The activation and inactivation of human factor VIII by thrombin: effect of inhibitors of thrombin. Blood 1981; 57: 476 – 82.en_US
dc.identifier.citedreferenceLollar P, Knutson GJ, Fass DN. Stabilization of thrombin activated procine factor VIII: C by factor IXa and phospholipid. Blood 1984; 63: 1303 – 8.en_US
dc.identifier.citedreferenceLollar P, Parker CG. pH-dependent denaturation of thrombin-activated porcne factor VIII. J Biol Chem 1990; 265 ( 3 ): 1688 – 92.en_US
dc.identifier.citedreferenceLollar P, Parker CG. Structural basis for the decreased procoagulant activity of human factor VIII compared to the porcine homolog. J Biol Chem 1991; 265 ( 3 ): 12481 – 6.en_US
dc.identifier.citedreferenceWebster WP, Zukoski CF, Hutchin P, Reddick RL, Mandel SR, Penick GD. Plasma factor VIII synthesis and control as revealed by canine organ transplantation. Am J Physiol 1971; 220: 1147 – 54.en_US
dc.identifier.citedreferenceLewis JH, Bontempo FA, Spero JA, Ragni MV, Starzl TE. Liver transplantation in a hemophiliac. N Engl J Med 1985; 312 ( 18 ): 1189 – 90.en_US
dc.identifier.citedreferenceKelly DA, Summerfield JA, Tuddenham EG. Localization of factor VIIIC: antigen in guinea-pig tissues and isolated liver cell fractions. Br J Haematol 1984; 56: 535 – 43.en_US
dc.identifier.citedreferenceZelechowska MG, van Mourik JA, Brodniewicz-Proba T. Ultrastructural localization of factor VIII procoagulant antigen in human liver hepatocytes. Nature 1985; 317: 729 – 30.en_US
dc.identifier.citedreferenceWion KL, Kelly D, Summerfield JA, Tuddenham EGD, Lawn RM. Distribution of factor VIII mRNA and antigen in human liver and other tissues. Nature 1985; 317: 726 – 9.en_US
dc.identifier.citedreferenceKaufman RJ. Developing rDNA products for treatment of hemophilia A. Trends in Biotechnology 1991; 9: 353 – 9.en_US
dc.identifier.citedreferenceToole JJ, Pittman DD, Orr EC, Murtha P, Wasley LC, Kaufman RJ. A large region (∼ 95 kDA) of human factor VIII is dispensable for in vitro activity. Proc Natl Acad Sci USA 1986; 83: 5939 – 42.en_US
dc.identifier.citedreferenceBerntorp E. Second generation, B-domain deleted recombinant factor VIII. Thromb Haemost 1997; 78: 256 – 60.en_US
dc.identifier.citedreferenceSela M, White Jr. FH, Anfinsen CB. Reductive cleavage of disulfide bridges in ribonuclease. Science 1957; 125: 691 – 3.en_US
dc.identifier.citedreferenceMunro S, Pelham HRB. An Hsp 70-like protein in the ER: Identity with the 78 Kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 1986; 46: 291 – 300.en_US
dc.identifier.citedreferenceDorner AJ, Bole DG, Kaufman RJ. The relationship of N-linked glycosylation and heavy chain-binding protein association with the secretion of glycoproteins. J Cell Biol 1987; 105: 2665 – 74.en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Overexpression of GRP78 mitigates stress induction of glucose regulated proteins and blocks secretion of selective proteins in Chinese hamster ovary cells. EMBO J 1992; 11: 1563 – 71.en_US
dc.identifier.citedreferenceFlynn GC, Chappell TG, Rothman JE. Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 1989; 245: 385 – 90.en_US
dc.identifier.citedreferenceKozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malforded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature 1988; 332: 462 – 4.en_US
dc.identifier.citedreferenceLee AS. Mammalian stress response: Induction of the glucose-regulated protein family. Curr Opin Cell Biol 1992; 4: 267 – 73.en_US
dc.identifier.citedreferenceDorner AJ, Wasley LC, Kaufman RJ. Protein dissociation from GRP78 and secretion is blocked by depletion of cellular ATP levels. Proc Natl Acad Sci USA 1990; 87: 7429 – 32.en_US
dc.identifier.citedreferencePittman DD, Tomkinson KN, Kaufman RJ. Post-translational requirements for functional factor V and factor VIII secretion in mammalian cells. J Biol Chem 1994; 269: 17329 – 37.en_US
dc.identifier.citedreferenceMarquette KA, Pittman DD, Kaufman RJ. A 110 amino acid region within the A1-domain of coagulation factor VIII inhibits secretion from mammalian cells. J Biol Chem 1995; 270(10): 10297 – 303.en_US
dc.identifier.citedreferenceSwaroop M, Moussalli M, Pipe SW, Kaufman RJ. Mutagenesis of a potential BiP binding site enhances secretion of coagulation factor VIII. J Biol Chem 1997; 272(39): 24121 – 4.en_US
dc.identifier.citedreferenceInada Y, Matsushima A, Hiroto M, Nishimura H, Kodera Y. Modification of proteins with polyethylene glycol derivatives. Methods in Enzymology 1994; 242: 65 – 90.en_US
dc.identifier.citedreferenceHershfield MS. PEG-ADA replacement therapy for adenosine deaminase deficiency: an update after 8.5 years. Clin Immun Immunopathol 1995; 76: S228 – 32.en_US
dc.identifier.citedreferenceScandella D, DeGraaf Mahoney S, Mattingly M, Roeder D, Timmons L, Fulcher CA. Epitope mapping of human factor VIII inhibitor antibodies by deletion analysis of factor VIII fragments expressed in Escherichia coli [published erratum appears in Proc Natl Acad Sci USA 1989 Feb; 86(4): 1387]. Proc Natl Acad Sci USA 1988; 85: 6152 – 6.en_US
dc.identifier.citedreferenceScandella D, Mattingly M, de Graaf S, Fulcher CA. Localization of epitopes for human factor VIII inhibitor antibodies by immunoblotting and antibody neutralization. Blood 1989; 74: 1618 – 26.en_US
dc.identifier.citedreferenceFulcher CA, de Graaf Mahoney S, Roberts JR, Kasper CK, Zimmerman TS. Localization of human factor FVIII inhibitor epitopes to two polypeptide fragments. Proc Natl Acad Sci USA 1985; 82: 7728 – 32.en_US
dc.identifier.citedreferenceZhong D, Scandella D. Epitope of a hemophilia A inhibitor antibody overlaps the factor VIII binding site for factor IX. Blood 1996; 88: 324a.en_US
dc.identifier.citedreferenceGilles JG, Arnout J, Vermylen J, Saint-Remy JM. Anti-factor VIII antibodies of hemophiliac patients are frequently directed towards nonfunctional determinants and do not exhibit isotypic restriction. Blood 1993; 82: 2452 – 61.en_US
dc.identifier.citedreferenceHay C, Lozier JN. Porcine factor VIII therapy in patients with factor VIII inhibitors. [Review] [11 refs]. Adv Experimental Med Biol 1995; 386: 143 – 51.en_US
dc.identifier.citedreferenceKernoff PBA. Porcine factor VIII: prepration and use in treatment of inhibitor patients. In: Factor VIII Inhibitors. Hoyer LW, ed. New York: Alan R. Liss, 1984; 207 – 24.en_US
dc.identifier.citedreferenceHealey JF, Lubin IM, Nakai H, et al. Residues 484–508 contain a major determinant of the inhabitory epitope in the A2 domain of human factor VIII. J Biol Chem 1995; 270: 14505 – 9.en_US
dc.identifier.citedreferenceLubin IM, Healey JF, Barrow RT, Scandella D, Lollar P. Analysis of the human factor VIII A2 inhibitor epitope by alanine scanning mutagenesis. J Biol Chem 1997; 272: 30191 – 5.en_US
dc.identifier.citedreferencePittman DD, Kaufman RJ. The proteolytic requirements for activation and inactivation of antihemophilic factor (Factor VIII). Proc Natl Acad Sci USA 1988; 85: 2429 – 33.en_US
dc.identifier.citedreferenceHill-Eubanks DC, Parker CG, Lollar P. Differential proteolytic activation of factor VIII — von Willebrand factor complex by thrombin. Proc Natl Acad Sci USA 1989; 86: 6508 – 12.en_US
dc.identifier.citedreferencePipe SW, Kaufman RJ. Characterization of a genetically engineered inactivation-resistant coagulation factor VIIIa. Proc Natl Acad Sci USA 1997; 94: 11851 – 6.en_US
dc.identifier.citedreferenceAmano K, Michnick DA, Moussalli M, Kaufman RJ. Mutation at either Arg336 or Arg562 in Factor VIII is insufficient for complete resistance to activated protein C (APC)-mediated inactivation: Implications for the APC resistance test. Thromb Haemost, in press.en_US
dc.identifier.citedreferenceBi L, Lawler AM, Antonarakis SE, High KA, Gearhart JD, Kazazian HH, Jr.. Targeted disruption of the mouse factor VIII gene produces a model of haemophilia A [letter]. Nat Genet 1995; 10: 119 – 21.en_US
dc.identifier.citedreferenceGiles AR, Tinlin S, Greenwood R. A canine model of hemophilic (factor VIII: C deficiency) bleeding. Blood 1982; 60: 727 – 30.en_US
dc.identifier.citedreferenceZaitseva I, Zaitsev V, Card G, et al. The x-ray structure of human serum ceruloplasmin at 3.1: nature of the copper centres. J Biol Inorg Chem 1996; 1: 15 – 23.en_US
dc.identifier.citedreferencePemberton S, Lindley P, Zaitsev V, Card G, Tuddenham EGD, Kemball-Cook G. A molecular model for the triplicated A domains of human factor VIII based on the crystal structure of human ceruloplasmin. Blood 1997; 89: 2413 – 21.en_US
dc.identifier.citedreferenceFay PJ, Beattie T, Huggins CF, Regan LM. Factor VIIIa A2 subunit residues 558–565 represent a factor IXa interactive site. J Biol Chem 1994; 269 ( 12 ): 20522 – 7.en_US
dc.identifier.citedreferenceO'Brien LM, Medved LV, Fay PJ. Localization of factor IXa and factor VIIIa interactive sites. J Biol Chem 1995; 270: 27087 – 92.en_US
dc.identifier.citedreferenceLenting PJ, Christophe OD, Maat H, Rees DJG, Mertens K. Ca2+ binding to the first epidermal growth factor-like domain of human blood coagulation factor IX promotes enzyme activity and factor VIII light chain binding. J Biol Chem 1996; 271: 25332 – 7.en_US
dc.identifier.citedreferenceLenting PJ, van de Loo JW, Donath MJ, van Mourik JA, Mertens K. The sequence Glu 1811-Lys 1818 of human blood coagulation factor VIII comprises a binding site for activated factor IX. J Biol Chem 1996; 271: 1935 – 40.en_US
dc.identifier.citedreferenceBode W, Brandstetter H, Mather T, Stubbs MT. Comparative analysis of haemostatic proteinases: structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost 1997; 78: 501 – 11.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.