Show simple item record

Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options

dc.contributor.authorLudolph, A. C.en_US
dc.contributor.authorKassubek, J.en_US
dc.contributor.authorLandwehrmeyer, B. G.en_US
dc.contributor.authorMandelkow, E. -M.en_US
dc.contributor.authorMandelkow, E. -M.en_US
dc.contributor.authorBurn, D. J.en_US
dc.contributor.authorCaparros-Lefebvre, D.en_US
dc.contributor.authorFrey, Kirk A.en_US
dc.contributor.authorde Yebenes, J. G.en_US
dc.contributor.authorGasser, T.en_US
dc.contributor.authorHeutink, P.en_US
dc.contributor.authorHöglinger, G.en_US
dc.contributor.authorJamrozik, Z.en_US
dc.contributor.authorJellinger, K. A.en_US
dc.contributor.authorKazantsev, A.en_US
dc.contributor.authorKretzschmar, H.en_US
dc.contributor.authorLang, Anthony E.en_US
dc.contributor.authorLitvan, Ireneen_US
dc.contributor.authorLucas, J. J.en_US
dc.contributor.authorMcGeer, P. L.en_US
dc.contributor.authorMelquist, S.en_US
dc.contributor.authorOertel, W.en_US
dc.contributor.authorOtto, M.en_US
dc.contributor.authorPaviour, D.en_US
dc.contributor.authorReum, T.en_US
dc.contributor.authorSaint-Raymond, A.en_US
dc.contributor.authorSteele, J. C.en_US
dc.contributor.authorTolnay, M.en_US
dc.contributor.authorTumani, H.en_US
dc.contributor.authorvan Swieten, J. C.en_US
dc.contributor.authorVanier, M. T.en_US
dc.contributor.authorVonsattel, J. -P.en_US
dc.contributor.authorWagner, S.en_US
dc.contributor.authorWszolek, Z. K.en_US
dc.date.accessioned2010-06-01T20:48:52Z
dc.date.available2010-06-01T20:48:52Z
dc.date.issued2009-03en_US
dc.identifier.citationLudolph, A. C.; Kassubek, J.; Landwehrmeyer, B. G.; Mandelkow, E.; Mandelkow, E.-M.; Burn, D. J.; Caparros-Lefebvre, D.; Frey, K. A.; de Yebenes, J. G.; Gasser, T.; Heutink, P.; HÖglinger, G.; Jamrozik, Z.; Jellinger, K. A.; Kazantsev, A.; Kretzschmar, H.; Lang, A. E.; Litvan, I.; Lucas, J. J.; McGeer, P. L.; Melquist, S.; Oertel, W.; Otto, M.; Paviour, D.; Reum, T.; Saint-Raymond, A.; Steele, J. C.; Tolnay, M.; Tumani, H.; van Swieten, J. C.; Vanier, M. T.; Vonsattel, J.-P.; Wagner, S.; Wszolek, Z. K. (2009). "Tauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment options." European Journal of Neurology 16(3): 297-309. <http://hdl.handle.net/2027.42/73913>en_US
dc.identifier.issn1351-5101en_US
dc.identifier.issn1468-1331en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73913
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=19364361&dopt=citationen_US
dc.format.extent249293 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 European Federation of Neurological Societiesen_US
dc.subject.otherCorticobasal Degenerationen_US
dc.subject.otherFrontotemporal Dementia With Parkinsonism Linked to Chromosome 17en_US
dc.subject.otherMicrotubule-associated Protein Tauen_US
dc.subject.otherMultiple System Atrophyen_US
dc.subject.otherParkinson Diseaseen_US
dc.subject.otherParkinsonismen_US
dc.subject.otherProgressive Supranuclear Palsyen_US
dc.subject.otherTauopathiesen_US
dc.titleTauopathies with parkinsonism: clinical spectrum, neuropathologic basis, biological markers, and treatment optionsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelNeurosciencesen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumUniversity of Michigan Medical Center, 1500 E Medical Center Dr, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Neurology, University of Ulm, Ulm, Germanyen_US
dc.contributor.affiliationotherMax Planck Unit for Structural Molecular Biology, c/o DESY, Notkestr, Hamburg, Germanyen_US
dc.contributor.affiliationotherInstitute for Ageing and Health, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, UKen_US
dc.contributor.affiliationotherCentre Hospitalier de Valenciennes, RÉsidence du Val d’Escaut, Avenue Desandrouin, Valenciennes, Franceen_US
dc.contributor.affiliationotherHospital Ramon y Cajal, Neurology, Carretera Colmenar, Madrid, Spainen_US
dc.contributor.affiliationotherUniversitÄtsklinikum TÜbingen, Zentrum fÜr Neurologie, Hoppe-Seyler-Strasse, TÜbingen, Germanyen_US
dc.contributor.affiliationotherVU University Medical Center, Department of Clinical Genetics and Anthropogenet, van der Boechorststraat, Amsterdam, the Netherlandsen_US
dc.contributor.affiliationotherPhilipps-UniversitÄt, Neurologie, Rudolf-Bultmann-Strasse, Marburg, Germanyen_US
dc.contributor.affiliationotherMedical University of Warsaw, Neurology, Banacha, Warsaw, Polanden_US
dc.contributor.affiliationotherInstitute of Clinical Neurobiology, Kenyongasse, Vienna, Austriaen_US
dc.contributor.affiliationotherMassachusetts General Hospital, MIND/Harvard Medical School, Charlestown, MA, USAen_US
dc.contributor.affiliationotherInstitut fÜr Neuropathologie, BrainNet (German Brain Bank), Feodor-Lynen-Strasse, Munich, Germanyen_US
dc.contributor.affiliationotherToronto Western Hospital, Movement Disorders Center, Toronto, ON, Canadaen_US
dc.contributor.affiliationotherUniversity of Louisville, School of Medicine/Department of Neurology, Louisville, KY, USAen_US
dc.contributor.affiliationotherCentro de Biologica Molecular “Severo Ochoa,” Universidad Autonoma de Madrid and CiberNed, Cantoblanco, Madrid, Spainen_US
dc.contributor.affiliationotherUniversity of British Columbia, Kinsmen Laboratory of Neurological Research, Vancouver, BC, Canadaen_US
dc.contributor.affiliationotherMayo Clinic, Department of Neuroscience, Jacksonville, FL, USAen_US
dc.contributor.affiliationotherNational Hospital for Neurology, Dementia Research Centre, London, Englanden_US
dc.contributor.affiliationotherBundesinstitut fÜr Arzneimittel & Medizinprodukte, Wissenschaftlicher Service/Klinische PrÜfungen, Georg-Kiesinger-Allee, Bonn, Germanyen_US
dc.contributor.affiliationotherEuropean Medicines Agency (EMEA), Scientific Advice and Orphan Drugs Sector, 7 Westferry Circus, Canary Wharf, London, Englanden_US
dc.contributor.affiliationotherGuam Memorial Hospital, Neurology, Carlos Camacho Way, Tamuning, Guamen_US
dc.contributor.affiliationotherInstitut fÜr Pathologie, SchÖnbeinstrasse, Basel, Switzerlanden_US
dc.contributor.affiliationotherUniversity Hospital Rotterdam, Department of Neurology, Erasmus MC, Dr Molewaterplein, GD Rotterdam, the Netherlandsen_US
dc.contributor.affiliationotherInstitut National de la SantÉ et de la Recherche MÉdicale, Unit 820, LaËnnec Medical School, Lyon, Franceen_US
dc.contributor.affiliationotherNew York Brain Bank, Columbia University, Pathology, Babies Hospital, New York, NY, USAen_US
dc.contributor.affiliationotherDeutsche PSP-Gesellschaft e.V. (PSP Germany), c/o S. Wagner, KÖnneritzstrasse, Leipzig, Germanyen_US
dc.contributor.affiliationotherMayo Clinic, Department of Neurology, Jacksonville, FL, USAen_US
dc.identifier.pmid19364361en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73913/1/j.1468-1331.2008.02513.x.pdf
dc.identifier.doi10.1111/j.1468-1331.2008.02513.xen_US
dc.identifier.sourceEuropean Journal of Neurologyen_US
dc.identifier.citedreferenceLitvan I, Agid Y, Calne D, et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 1996; 47: 1 – 9.en_US
dc.identifier.citedreferenceSantacruz P, Uttl B, Litvan I, Grafman J. Progressive supranuclear palsy: a survey of the disease course. Neurology 1998; 50: 1637 – 1647.en_US
dc.identifier.citedreferenceLopez OL, Litvan I, Catt KE, et al. Accuracy of four clinical diagnostic criteria for the diagnosis of neurodegenerative dementias. Neurology 1999; 53: 1292 – 1299.en_US
dc.identifier.citedreferenceNath U, Ben-Shlomo Y, Thomson RG, Lees AJ, Burn DJ. Clinical features and natural history of progressive supranuclear palsy: a clinical cohort study. Neurology 2003; 60: 910 – 916.en_US
dc.identifier.citedreferenceWilliams DR, de Silva R, Paviour DC, et al. Characteristics of two distinct clinical phenotypes in pathologically proven progressive supranuclear palsy: Richardson’s syndrome and PSP-parkinsonism. Brain 2005; 128 ( Pt 6 ): 1247 – 1258.en_US
dc.identifier.citedreferenceSteele JC, Richardson JC, Olszewski J. Progressive supranuclear palsy: a heterogeneous degeneration involving the brain stem, basal ganglia and cerebellum with vertical gaze and pseudobulbar palsy, nuchal dystonia and dementia. Archives of Neurology 1964; 10: 333 – 359.en_US
dc.identifier.citedreferenceLitvan I, Hauw JJ, Bartko JJ, et al. Validity and reliability of the preliminary NINDS neuropathologic criteria for progressive supranuclear palsy and related disorders. Journal of Neuropathology and Experimental Neurology 1996; 55: 97 – 105.en_US
dc.identifier.citedreferenceBoeve BF, Lang AE, Litvan I. Corticobasal degeneration and its relationship to progressive supranuclear palsy and frontotemporal dementia. Annals of Neurology 2003; 54 ( Suppl 5 ): S15 – S19.en_US
dc.identifier.citedreferencevan Swieten J, Spillantini MG. Hereditary frontotemporal dementia caused by Tau gene mutations. Brain Pathology 2007; 17: 63 – 73.en_US
dc.identifier.citedreferenceBaker M, Mackenzie IR, Pickering-Brown SM, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 2006; 442: 916 – 919.en_US
dc.identifier.citedreferenceVanier MT, Millat G. Niemann-Pick disease type C. Clinical Genetics 2003; 64: 269 – 281.en_US
dc.identifier.citedreferenceSteele JC. Parkinsonism–dementia complex of Guam. Movement Disorders 2005; 20 ( Suppl 12 ): S99 – S107.en_US
dc.identifier.citedreferenceCaparros-Lefebvre D, Steele J, Kotake Y, Ohta S. Geographic isolates of atypical Parkinsonism and tauopathy in the tropics: possible synergy of neurotoxins. Movement Disorders 2006; 21: 1769 – 1771.en_US
dc.identifier.citedreferenceSteele JC, McGeer PL. The ALS/PDC syndrome of Guam and the cycad hypothesis. Neurology 2008; 70: 1984 – 1990.en_US
dc.identifier.citedreferenceCaparros-Lefebvre D, Elbaz A, Caribbean Parkinsonism Study Group. Possible relation of atypical parkinsonism in the French West Indies with consumption of tropical plants: a case–control study. Lancet 1999; 354: 281 – 286.en_US
dc.identifier.citedreferenceCaparros-Lefebvre D, Sergeant N, Lees A, et al. Guadeloupean parkinsonism: a cluster of progressive supranuclear palsy-like tauopathy. Brain 2002; 125 ( Pt 4 ): 801 – 811.en_US
dc.identifier.citedreferenceLannuzel A, Hoglinger GU, Verhaeghe S, et al. Atypical parkinsonism in Guadeloupe: a common risk factor for two closely related phenotypes? Brain 2007; 130 ( Pt 3 ): 816 – 827.en_US
dc.identifier.citedreferenceEscobar-Khondiker M, Hollerhage M, Muriel MP, et al. Annonacin, a natural mitochondrial complex I inhibitor, causes tau pathology in cultured neurons. Journal of Neuroscience 2007; 27: 7827 – 7837.en_US
dc.identifier.citedreferenceHutton M, Lendon CL, Rizzu P, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 1998; 393: 702 – 705.en_US
dc.identifier.citedreferenceSpillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proceedings of the National Academy of Sciences of the United States of America 1998; 95: 7737 – 7741.en_US
dc.identifier.citedreferencede Yebenes JG, Sarasa JL, Daniel SE, Lees AJ. Familial progressive supranuclear palsy: description of a pedigree and review of the literature. Brain 1995; 118 ( Pt 5 ): 1095 – 1103.en_US
dc.identifier.citedreferenceWszolek ZK, Pfeiffer RF, Tsuboi Y, et al. Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 2004; 62: 1619 – 1622.en_US
dc.identifier.citedreferenceMiklossy J, Arai T, Guo JP, et al. LRRK2 expression in normal and pathologic human brain and in human cell lines. Journal of Neuropathology and Experimental Neurology 2006; 65: 953 – 963.en_US
dc.identifier.citedreferenceBaker M, Litvan I, Houlden H, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Human Molecular Genetics 1999; 8: 711 – 715.en_US
dc.identifier.citedreferenceMelquist S, Craig DW, Huentelman MJ, et al. Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500,288 single-nucleotide polymorphisms. American Journal of Human Genetics 2007; 80: 769 – 778.en_US
dc.identifier.citedreferenceRos R, Ampuero I, GarcÍa de YÉbenes J. Parkin polymorphisms in progressive supranuclear palsy. Journal of the Neurological Sciences 2008; 268: 176 – 178.en_US
dc.identifier.citedreferencePaviour DC, Price SL, Jahanshahi M, Lees AJ, Fox NC. Longitudinal MRI in progressive supranuclear palsy and multiple system atrophy: rates and regions of atrophy. Brain 2006; 129 ( Pt 4 ): 1040 – 1049.en_US
dc.identifier.citedreferencePaviour DC, Price SL, Lees AJ, Fox NC. MRI derived brain atrophy in PSP and MSA-P: determining sample size to detect treatment effects. Journal of Neurology 2007; 254: 478 – 481.en_US
dc.identifier.citedreferenceEckert T, Barnes A, Dhawan V, et al. FDG PET in the differential diagnosis of parkinsonian disorders. Neuroimage 2005; 26: 912 – 921.en_US
dc.identifier.citedreferencePiccini P, de Yebenez J, Lees AJ, et al. Familial progressive supranuclear palsy: detection of subclinical cases using 18F-dopa and 18fluorodeoxyglucose positron emission tomography. Archives of Neurology 2001; 58: 1846 – 1851.en_US
dc.identifier.citedreferenceMollenhauer B, Bibl M, Esselmann H, et al. Tauopathies and synucleinopathies: do cerebrospinal fluid beta-amyloid peptides reflect disease-specific pathogenesis? Journal of Neural Transmission 2007; 114: 919 – 927.en_US
dc.identifier.citedreferenceBrettschneider J, Petzold A, Sussmuth SD, et al. Neurofilament heavy-chain NfH(SMI35) in cerebrospinal fluid supports the differential diagnosis of Parkinsonian syndromes. Movement Disorders 2006; 21: 2224 – 2227.en_US
dc.identifier.citedreferenceMandelkow EM, Drewes G, Biernat J, et al. Glycogen synthase kinase-3 and the Alzheimer-like state of microtubule-associated protein tau. FEBS Letters 1992; 314: 315 – 321.en_US
dc.identifier.citedreferencePei JJ, Braak E, Braak H, et al. Distribution of active glycogen synthase kinase 3β (GSK-3β) in brains staged for Alzheimer disease neurofibrillary changes. Journal of Neuropathology and Experimental Neurology 1999; 58: 1010 – 1019.en_US
dc.identifier.citedreferenceFerrer I, Barrachina M, Puig B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathologica 2002; 104: 583 – 591.en_US
dc.identifier.citedreferenceLucas JJ, Hernandez F, Gomez-Ramos P, Moran MA, Hen R, Avila J. Decreased nuclear β-catenin, tau hyperphosphorylation and neurodegeneration in GSK-3β conditional transgenic mice. EMBO Journal 2001; 20: 27 – 39.en_US
dc.identifier.citedreferenceHernandez F, Borrell J, Guaza C, Avila J, Lucas JJ. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3β in the brain but do not form tau filaments. Journal of Neurochemistry 2002; 83: 1529 – 1533.en_US
dc.identifier.citedreferenceEngel T, Hernandez F, Avila J, Lucas JJ. Full reversal of Alzheimer’s disease-like phenotype in a mouse model with conditional overexpression of glycogen synthase kinase-3. Journal of Neuroscience 2006; 26: 5083 – 5090.en_US
dc.identifier.citedreferenceEngel T, Goni-Oliver P, Lucas JJ, Avila J, Hernandez F. Chronic lithium administration to FTDP-17 tau and GSK-3β overexpressing mice prevents tau hyperphosphorylation and neurofibrillary tangle formation, but pre-formed neurofibrillary tangles do not revert. Journal of Neurochemistry 2006; 99: 1445 – 1455.en_US
dc.identifier.citedreferenceDuff K, Planel E. Untangling memory deficits. Nature Medicine 2005; 11: 826 – 827.en_US
dc.identifier.citedreferenceLannuzel A, Michel PP, Caparros-Lefebvre D, Abaul J, Hocquemiller R, Ruberg M. Toxicity of Annonaceae for dopaminergic neurons: potential role in atypical parkinsonism in Guadeloupe. Movement Disorders 2002; 17: 84 – 90.en_US
dc.identifier.citedreferenceLannuzel A, Michel PP, Hoglinger GU, et al. The mitochondrial complex I inhibitor annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism. Neuroscience 2003; 121: 287 – 296.en_US
dc.identifier.citedreferenceChampy P, Hoglinger GU, FÉger J, et al. Annonacin, a lipophilic inhibitor of mitochondrial complex I, induces nigral and striatal neurodegeneration in rats: possible relevance for atypical parkinsonism in Guadeloupe. Journal of Neurochemistry 2004; 88: 63 – 69.en_US
dc.identifier.citedreferenceBetarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nature Neuroscience 2000; 3: 1301 – 1306.en_US
dc.identifier.citedreferenceHoglinger GU, Lannuzel A, Khondiker ME, et al. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. Journal of Neurochemistry 2005; 95: 930 – 939.en_US
dc.identifier.citedreferenceAlbers DS, Swerdlow RH, Manfredi G, et al. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy. Experimental Neurology 2001; 168: 196 – 198.en_US
dc.identifier.citedreferenceMcGeer PL, McGeer EG. The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases. Brain Research. Brain Research Reviews 1995; 21: 195 – 218.en_US
dc.identifier.citedreferenceChen H, Zhang SM, Hernan MA, et al. Nonsteroidal anti-inflammatory drugs and the risk of Parkinson disease. Archives of Neurology 2003; 60: 1059 – 1064.en_US
dc.identifier.citedreferenceMcGeer PL, McGeer E, Rogers J, Sibley J. Anti-inflammatory drugs and Alzheimer disease. Lancet 1990; 335: 1037.en_US
dc.identifier.citedreferenceZhang B, Maiti A, Shively S, et al. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 227 – 231.en_US
dc.identifier.citedreferenceLe Corre S, Klafki HW, Plesnila N, et al. An inhibitor of tau hyperphosphorylation prevents severe motor impairments in tau transgenic mice. Proceedings of the National Academy of Sciences of the United States of America 2006; 103: 9673 – 9678.en_US
dc.identifier.citedreferenceNoble W, Planel E, Zehr C, et al. Inhibition of glycogen synthase kinase-3 by lithium correlates with reduced tauopathy and degeneration in vivo. Proceedings of the National Academy of Sciences of the United States of America 2005; 102: 6990 – 6995.en_US
dc.identifier.citedreferenceLiou YC, Sun A, Ryo A, et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 2003; 424: 556 – 561.en_US
dc.identifier.citedreferenceWang YP, Biernat J, Pickhardt M, Mandelkow E, Mandelkow EM. Stepwise proteolysis liberates tau fragments that nucleate the Alzheimer-like aggregation of full-length tau in a neuronal cell model. Proceedings of the National Academy of Sciences of the United States of America 2007; 104: 10252 – 10257.en_US
dc.identifier.citedreferenceGamblin TC, Chen F, Zambrano A, et al. Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 10032 – 10037.en_US
dc.identifier.citedreferencePickhardt M, Gazova Z, von Bergen M, et al. Anthraquinones inhibit tau aggregation and dissolve Alzheimer’s paired helical filaments in vitro and in cells. Journal of Biological Chemistry 2005; 280: 3628 – 3635.en_US
dc.identifier.citedreferenceAsuni AA, Boutajangout A, Quartermain D, Sigurdsson EM. Immunotherapy targeting pathological tau conformers in a tangle mouse model reduces brain pathology with associated functional improvements. Journal of Neuroscience 2007; 27: 9115 – 9129.en_US
dc.identifier.citedreferenceRosenmann H, Grigoriadis N, Karussis D, et al. Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Archives of Neurology 2006; 63: 1459 – 1467.en_US
dc.identifier.citedreferenceLewis J, McGowan E, Rockwood J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein. Nature Genetics 2000; 25: 402 – 405 ( Erratum in: Nat Genet 2000 Sep;26(1):127 ).en_US
dc.identifier.citedreferenceSantacruz K, Lewis J, Spires T, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science 2005; 309: 476 – 481.en_US
dc.identifier.citedreferenceDuff K, Knight H, Refolo LM, et al. Characterization of pathology in transgenic mice over-expressing human genomic and cDNA tau transgenes. Neurobiology of Disease 2000; 7: 87 – 98.en_US
dc.identifier.citedreferenceIshihara T, Hong M, Zhang B, et al. Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 1999; 24: 751 – 762.en_US
dc.identifier.citedreferenceGotz J, Chen F, Barmettler R, Nitsch RM. Tau filament formation in transgenic mice expressing P301L tau. Journal of Biological Chemistry 2001; 276: 529 – 534.en_US
dc.identifier.citedreferenceGotz J, Probst A, Spillantini MG, et al. Somatodendritic localization and hyperphosphorylation of tau protein in transgenic mice expressing the longest human brain tau isoform. EMBO Journal 1995; 14: 1304 – 1313.en_US
dc.identifier.citedreferenceProbst A, Gotz J, Wiederhold KH, et al. Axonopathy and amyotrophy in mice transgenic for human four-repeat tau protein. Acta Neuropathologica 2000; 99: 469 – 481.en_US
dc.identifier.citedreferenceTanemura K, Akagi T, Murayama M, et al. Formation of filamentous tau aggregations in transgenic mice expressing V337M human tau. Neurobiology of Disease 2001; 8: 1036 – 1045.en_US
dc.identifier.citedreferenceTatebayashi Y, Miyasaka T, Chui DH, et al. Tau filament formation and associative memory deficit in aged mice expressing mutant (R406W) human tau. Proceedings of the National Academy of Sciences of the United States of America 2002; 99: 13896 – 13901.en_US
dc.identifier.citedreferenceDawson HN, Cantillana V, Chen L, Vitek MP. The tau N279K exon 10 splicing mutation recapitulates frontotemporal dementia and parkinsonism linked to chromosome 17 tauopathy in a mouse model. Journal of Neuroscience 2007; 27: 9155 – 9168.en_US
dc.identifier.citedreferenceAllen B, Ingram E, Takao M, et al. Abundant tau filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S tau protein. Journal of Neuroscience 2002; 22: 9340 – 9351.en_US
dc.identifier.citedreferenceYoshiyama Y, Higuchi M, Zhang B, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 2007; 53: 337 – 351 (Erratum in: Neuron. 2007 Apr 19;54:343-344).en_US
dc.identifier.citedreferenceSpittaels K, Van den Haute C, Van Dorpe J, et al. Prominent axonopathy in the brain and spinal cord of transgenic mice overexpressing four-repeat human tau protein. American Journal of Pathology 1999; 155: 2153 – 2165.en_US
dc.identifier.citedreferenceForman MS, Lal D, Zhang B, et al. Transgenic mouse model of tau pathology in astrocytes leading to nervous system degeneration. Journal of Neuroscience 2005; 25: 3539 – 3550.en_US
dc.identifier.citedreferenceIttner LM, Fath T, Ke YD, et al. Parkinsonism and impaired axonal transport in a mouse model of frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America 2008; 105: 15997 – 16002.en_US
dc.identifier.citedreferenceHiguchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ, Lee VM. Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. Journal of Neuroscience 2005; 25: 9434 – 9443.en_US
dc.identifier.citedreferenceMocanu MM, Nissen A, Eckermann K, et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. Journal of Neuroscience 2008; 28: 737 – 748.en_US
dc.identifier.citedreferenceOddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39: 409 – 421.en_US
dc.identifier.citedreferenceSchindowski K, Bretteville A, Leroy K, et al. Alzheimer’s disease-like tau neuropathology leads to memory deficits and loss of functional synapses in a novel mutated tau transgenic mouse without any motor deficits. American Journal of Pathology 2006; 169: 599 – 616.en_US
dc.identifier.citedreferenceJackson GR, Wiedau-Pazos M, Sang TK, et al. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 2002; 34: 509 – 519.en_US
dc.identifier.citedreferenceWittmann CW, Wszolek MF, Shulman JM, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science 2001; 293: 711 – 714.en_US
dc.identifier.citedreferenceKraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proceedings of the National Academy of Sciences of the United States of America 2003; 100: 9980 – 9985.en_US
dc.identifier.citedreferenceBai Q, Garver JA, Hukriede NA, Burton EA. Generation of a transgenic zebrafish model of Tauopathy using a novel promoter element derived from the zebrafish eno2 gene. Nucleic Acids Research 2007; 35: 6501 – 6516.en_US
dc.identifier.citedreferenceGolbe LI, Ohman-Strickland PA. A clinical rating scale for progressive supranuclear palsy. Brain 2007; 130 ( Pt 6 ): 1552 – 1565.en_US
dc.identifier.citedreferencevan Balken I, Litvan I. Current and future treatments in progressive supranuclear palsy. Current Treatment Options in Neurology 2006; 8: 211 – 223.en_US
dc.identifier.citedreferenceLudolph AC, Bendotti C, Blaugrund E, et al. Guidelines for the preclinical in vivo evaluation of pharmacological active drugs for ALS/MND: report on the 142nd ENMC international workshop. Amyotrophic Lateral Sclerosis 2007; 8: 217 – 223.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.