Show simple item record

One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders

dc.contributor.authorPaşca, Sergiu P.en_US
dc.contributor.authorDronca, Eleonoraen_US
dc.contributor.authorKaucsár, Tamásen_US
dc.contributor.authorCraciun, Elena C.en_US
dc.contributor.authorEndreffy, Emõkeen_US
dc.contributor.authorFerencz, Beatrix K.en_US
dc.contributor.authorIftene, Feliciaen_US
dc.contributor.authorBenga, Ileanaen_US
dc.contributor.authorCornean, Rodicaen_US
dc.contributor.authorBanerjee, Rumaen_US
dc.contributor.authorDronca, Mariaen_US
dc.date.accessioned2010-06-01T20:49:32Z
dc.date.available2010-06-01T20:49:32Z
dc.date.issued2009-10en_US
dc.identifier.citationPaşca, Sergiu P.; Dronca, Eleonora; KaucsÁr, TamÁs; Craciun, Elena C.; Endreffy, EmÕke; Ferencz, Beatrix K.; Iftene, Felicia; Benga, Ileana; Cornean, Rodica; Banerjee, Ruma; Dronca, Maria (2009). "One carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disorders." Journal of Cellular and Molecular Medicine 13(10): 4229-4238. <http://hdl.handle.net/2027.42/73924>en_US
dc.identifier.issn1582-1838en_US
dc.identifier.issn1582-4934en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73924
dc.description.abstractAutism spectrum disorders (ASDs), which include the prototypic autistic disorder (AD), Asperger’s syndrome (AS) and pervasive developmental disorders not otherwise specified (PDD-NOS), are complex neurodevelopmental conditions of unknown aetiology. The current study investigated the metabolites in the methionine cycle, the transsulphuration pathway, folate, vitamin B 12 and the C677T polymorphism of the MTHFR gene in three groups of children diagnosed with AD ( n = 15), AS ( n = 5) and PDD-NOS ( n = 19) and their age- and sex-matched controls ( n = 25). No metabolic disturbances were seen in the AS patients, while in the AD and PDD-NOS groups, lower plasma levels of methionine ( P = 0.01 and P = 0.03, respectively) and Α-aminobutyrate were observed ( P = 0.01 and P = 0.001, respectively). Only in the AD group, plasma cysteine ( P = 0.02) and total blood glutathione ( P = 0.02) were found to be reduced. Although there was a trend towards lower levels of serine, glycine, N, N-dimethylglycine in AD patients, the plasma levels of these metabolites as well as the levels of homocysteine and cystathionine were not statistically different in any of the ASDs groups. The serum levels of vitamin B 12 and folate were in the normal range. The results of the MTHFR gene analysis showed a normal distribution of the C677T polymorphism in children with ASDs, but the frequency of the 677T allele was slightly more prevalent in AD patients. Our study indicates a possible role for the alterations in one carbon metabolism in the pathophysiology of ASDs and provides, for the first time, preliminary evidence for metabolic and genetic differences between clinical subtypes of ASDs.en_US
dc.format.extent790285 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltden_US
dc.subject.otherAutismen_US
dc.subject.otherMethionine Cycleen_US
dc.subject.otherTranssulphurationen_US
dc.subject.otherVitaminsen_US
dc.subject.otherMTHFRen_US
dc.titleOne carbon metabolism disturbances and the C677T MTHFR gene polymorphism in children with autism spectrum disordersen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biologyen_US
dc.subject.hlbtoplevelHealth Sciencesen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Biological Chemistry, University of Michigan, Ann Arbor, MI, USAen_US
dc.contributor.affiliationotherDepartment of Medical Biochemistry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherCenter for Cognitive and Neural Studies (Coneural), Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherDepartment of Genetics, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherDepartment of Pharmaceutical Biochemistry and Clinical Laboratory, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherDepartment of Pediatrics, Albert Szent-GyÖrgyi Medical Center, University of Szeged, Hungaryen_US
dc.contributor.affiliationotherMolecular Biology Center, Institute of Interdisciplinary Research of Babeş-Bolyai University, Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherDepartment of Child Psychiatry, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romaniaen_US
dc.contributor.affiliationotherDepartment of Child Neurology, Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romaniaen_US
dc.identifier.pmid19267885en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73924/1/j.1582-4934.2008.00463.x.pdf
dc.identifier.doi10.1111/j.1582-4934.2008.00463.xen_US
dc.identifier.sourceJournal of Cellular and Molecular Medicineen_US
dc.identifier.citedreferenceVolkmar FR, Pauls D. Autism. Lancet. 2003; 362: 1133 – 41.en_US
dc.identifier.citedreference2.  American Psychiatric Association. Diagnostic and Statistical Manual-Text Revision. 4th ed. Washington, DC: American Psychiatric Association; 2000.en_US
dc.identifier.citedreference3.  Autism and Developmental Disabilities Monitoring Network Surveillance Year 2002 Principal Investigators, Centers for Disease Control and Prevention. Prevalence of autism spectrum disorders-autism and developmental disabilities monitoring network, 14 sites, United States, 2002. MMWR Surveill Summ. 2007; 56: 12 – 28.en_US
dc.identifier.citedreferenceBaird G, Simonoff E, Pickles A, et al. Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet. 2006; 368: 210 – 5.en_US
dc.identifier.citedreferenceGupta AR, State MW. Recent advances in the genetics of autism. Biol Psychiatry. 2007; 61: 429 – 37.en_US
dc.identifier.citedreferencePersico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci. 2006; 29: 349 – 58.en_US
dc.identifier.citedreferenceGeschwind DH, Levitt P. Autism spectrum disorders: developmental disconnection syndromes. Curr Opin Neurobiol. 2007; 17: 103 – 11.en_US
dc.identifier.citedreferenceHappe F, Ronald A, Plomin R. Time to give up on a single explanation for autism. Nat Neurosci. 2006; 9: 1218 – 20.en_US
dc.identifier.citedreferenceManzi B, Loizzo AL, Giana G, et al. Autism and metabolic diseases. J Child Neurol. 2008; 23: 307 – 14.en_US
dc.identifier.citedreferenceJames SJ, Cutler P, Melnyk S, et al. Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr. 2004; 80: 1611 – 7.en_US
dc.identifier.citedreferenceJames SJ, Melnyk S, Jernigan S, et al. Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet. 2006; 141: 947 – 56.en_US
dc.identifier.citedreferencePaÜsca SP, Nemes B, Vlase L, et al. High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci. 2006; 78: 2244 – 8.en_US
dc.identifier.citedreferenceGeier DA, Geier MR. A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res. 2006; 66: 182 – 8.en_US
dc.identifier.citedreferenceMoretti P, Peters SU, Del Gaudio D, et al. Brief report: autistic symptoms, developmental regression, mental retardation, epilepsy, and dyskinesias in CNS folate deficiency. J Autism Dev Disord. 2008; 38: 1170 – 7.en_US
dc.identifier.citedreferenceBoris M, Goldblatt A, Galanko J, et al. Association of MTHFR gene variants with autism. J Am Phys Sur g. 2004; 9: 106 – 8.en_US
dc.identifier.citedreferenceDeth R, Muratore C, Benzecry J, et al. How environmental and genetic factors combine to cause autism: A redox/ methylation hypothesis. Neurotoxicology. 2008; 29: 190 – 201.en_US
dc.identifier.citedreferenceSuh J, Walsh W, McGinnis W, et al. Altered sulfur amino acid metabolism in immune cells of children diagnosed with autism. Am J Biochem Biotech. 2008; 4: 105 – 13.en_US
dc.identifier.citedreferenceAdams M, Lucock M, Stuart J, et al. Preliminary evidence for involvement of the folate gene polymorphism 19bp deletion-DHFR in occurrence of autism. Neurosci Lett. 2007; 422: 24 – 9.en_US
dc.identifier.citedreferenceGeier DA, Kern JK, Garver CR, et al. A prospective study of transsulfuration biomarkers in autistic disorders. Neurochem Res. 2009; 34: 394.en_US
dc.identifier.citedreferenceChauhan A, Chauhan V. Oxidative stress in autism. Pathophysiology. 2006; 13: 171 – 81.en_US
dc.identifier.citedreferenceStabler SP, Lindenbaum J, Savage DG, et al. Elevation of serum cystathionine levels in patients with cobalamin and folate deficiency. Blood. 1993; 81: 3404 – 13.en_US
dc.identifier.citedreferenceStabler SP, Marcell PD, Podell ER, et al. Elevation of total homocysteine in the serum of patients with cobalamin or folate deficiency detected by capillary gas chromatography-mass spectrometry. J Clin Invest. 1988; 81: 466 – 74.en_US
dc.identifier.citedreferenceAslanidis C, Nauck M, Schmitz G. High-speed prothrombin G–>A 20210 and methylenetetrahydrofolate reductase C–>T 677 mutation detection using real-time fluorescence PCR and melting curves. Biotechniques. 1999; 27: 234 – 6, 8.en_US
dc.identifier.citedreferenceMoore LE, Hung R, Karami S, et al. Folate metabolism genes, vegetable intake and renal cancer risk in central Europe. Int J Cancer. 2008; 122: 1710 – 5.en_US
dc.identifier.citedreferenceWalker DR, Thompson A, Zwaigenbaum L, et al. Specifying PDD-NOS: a comparison of PDD-NOS, Asperger syndrome, and autism. J Am Acad Child Adolesc Psychiatry. 2004; 43: 172 – 80.en_US
dc.identifier.citedreferenceSchanen NC. Epigenetics of autism spectrum disorders. Hum Mol Genet. 2006; 2: R138 – 50.en_US
dc.identifier.citedreferenceSugden C. One-carbon metabolism in psychiatric illness. Nutr Res Rev. 2006; 19: 117 – 36.en_US
dc.identifier.citedreferenceMuskiet FA, Kemperman RF. Folate and long-chain polyunsaturated fatty acids in psychiatric disease. J Nutr Biochem. 2006; 17: 717 – 27.en_US
dc.identifier.citedreferenceAhearn WH, Castine T, Nault K, et al. An assessment of food acceptance in children with autism or pervasive developmental disorder-not otherwise specified. J Autism Dev Disord. 2001; 31: 505 – 11.en_US
dc.identifier.citedreferenceArnold GL, Hyman SL, Mooney RA, et al. Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. J Autism Dev Disord. 2003; 33: 449 – 54.en_US
dc.identifier.citedreferenceLevy SE, Souders MC, Ittenbach RF, et al. Relationship of dietary intake to gastrointestinal symptoms in children with autistic spectrum disorders. Biol Psychiatry. 2007; 61: 492 – 7.en_US
dc.identifier.citedreferenceRozen R. Genetic predisposition to hyperhomocysteinemia: deficiency of methylenetetrahydrofolate reductase (MTHFR). Thromb Haemost. 1997; 78: 523 – 6.en_US
dc.identifier.citedreferenceLatif A, Heinz P, Cook R. Iron deficiency in autism and Asperger syndrome. Autism. 2002; 6: 103 – 14.en_US
dc.identifier.citedreferenceFernell E, Karagiannakis A, Edman G, et al. Aberrant amino acid transport in fibroblasts from children with autism. Neurosci Lett. 2007; 418: 82 – 6.en_US
dc.identifier.citedreferenceSiva Sankar DV. Plasma levels of folates, riboflavin, vitamin B6, and ascorbate in severely disturbed children. J Autism Dev Disord. 1979; 9: 73 – 82.en_US
dc.identifier.citedreferenceAdams JB, George F, Audhya T. Abnormally high plasma levels of vitamin B6 in children with autism not taking supplements compared to controls not taking supplements. J Altern Complement Med. 2006; 12: 59 – 63.en_US
dc.identifier.citedreferenceAdams JB, Holloway C. Pilot study of a moderate dose multivitamin/mineral supplement for children with autistic spectrum disorder. J Altern Complement Med. 2004; 10: 1033 – 9.en_US
dc.identifier.citedreferenceGeier DA, Geier MR. A prospective assessment of androgen levels in patients with autistic spectrum disorders: biochemical underpinnings and suggested therapies. Neuro Endocrinol Lett. 2007; 28: 565 – 73.en_US
dc.identifier.citedreferencePrudova A, Albin M, Bauman Z, et al. Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid Redox Signal. 2007; 9: 1875 – 81.en_US
dc.identifier.citedreferenceVitvitsky V, Prudova A, Stabler S, et al. Testosterone regulation of renal cystathionine beta-synthase: implications for sex-dependent differences in plasma homocysteine levels. Am J Physiol Renal Physiol. 2007; 293: F594 – 600.en_US
dc.identifier.citedreferenceAlberti A, Pirrone P, Elia M, et al. Sulphation deficit in “low-functioning” autistic children: a pilot study. Biol Psychiatry. 1999; 46: 420 – 4.en_US
dc.identifier.citedreferenceClarkson TW, Nordberg GF, Sager PR. Reproductive and developmental toxicity of metals. Scand J Work Environ Health. 1985; 11: 145 – 54.en_US
dc.identifier.citedreferenceNataf R, Skorupka C, Amet L, et al. Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Appl Pharmacol. 2006; 214: 99 – 108.en_US
dc.identifier.citedreferenceGeier DA, Geier MR. A prospective study of mercury toxicity biomarkers in autistic spectrum disorders. J Toxicol Environ Health A. 2007; 70: 1723 – 30.en_US
dc.identifier.citedreferenceGeier DA, Geier MR. A prospective assessment of porphyrins in autistic disorders: a potential marker for heavy metal exposure. Neurotox Res. 2006; 10: 57 – 64.en_US
dc.identifier.citedreferenceBoger-Megiddo I, Shaw DW, Friedman SD, et al. Corpus callosum morphometrics in young children with autism spectrum disorder. J Autism Dev Disord. 2006; 36: 733 – 9.en_US
dc.identifier.citedreferenceConnolly AM, Chez M, Streif EM, et al. Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry. 2006; 59: 354 – 63.en_US
dc.identifier.citedreferenceVan den Veyver IB. Genetic effects of methylation diets. Annu Rev Nutr. 2002; 22: 255 – 82.en_US
dc.identifier.citedreferenceBadcock C, Crespi B. Imbalanced genomic imprinting in brain development: an evolutionary basis for the aetiology of autism. J Evol Biol. 2006; 19: 1007 – 32.en_US
dc.identifier.citedreferenceUhlhaas PJ, Singer W. What do disturbances in neural synchrony tell us about autism ? Biol Psychiatry. 2007; 62: 190 – 1.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.