Show simple item record

Stable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )

dc.contributor.authorHorton, Travis W.en_US
dc.contributor.authorBlum, Joel Den_US
dc.contributor.authorXie, Zhouqingen_US
dc.contributor.authorHren, Michaelen_US
dc.contributor.authorChamberlain, C. Pageen_US
dc.date.accessioned2010-06-01T20:49:54Z
dc.date.available2010-06-01T20:49:54Z
dc.date.issued2009-12en_US
dc.identifier.citationHorton, Travis W.; Blum, Joel D.; Xie, Zhouqing; Hren, Michael; Chamberlain, C. Page (2009). "Stable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )." Polar Research 28(3): 443-454. <http://hdl.handle.net/2027.42/73930>en_US
dc.identifier.issn0800-0395en_US
dc.identifier.issn1751-8369en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73930
dc.description.abstractMercury (Hg) biomagnification occurs in many ecosystems, resulting in a greater potential for toxicological effects in higher-level trophic feeders. However, Hg transport pathways through different food-web channels are not well known, particularly in high-latitude systems affected by the atmospheric Hg deposition associated with snow and ice. Here, we report on stable carbon and nitrogen isotope ratios, and Hg concentrations, determined for 26, late 19th and early 20th century, polar bear ( Ursus maritimus ) hair specimens, collected from catalogued museum collections. These data elucidate relationships between the high-latitude marine food-web structure and Hg concentrations in polar bears. The carbon isotope compositions of polar bear hairs suggest that polar bears derive nutrition from coupled food-web channels, based in pelagic and sympagic primary producers, whereas the nitrogen isotope compositions indicate that polar bears occupy > fourth-level trophic positions. Our results show a positive correlation between polar bear hair Hg concentrations and δ 15 N. Interpretation of the stable isotope data in combination with Hg concentrations tentatively suggests that polar bears participating in predominantly pelagic food webs exhibit higher mercury concentrations than polar bears participating in predominantly sympagic food webs.en_US
dc.format.extent885028 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights© 2009 Norwegian Polar Instituteen_US
dc.subject.otherArcticen_US
dc.subject.otherFood Websen_US
dc.subject.otherPelagicen_US
dc.subject.otherPolar Bearsen_US
dc.subject.otherStable Isotopesen_US
dc.subject.otherSympagicen_US
dc.titleStable isotope food-web analysis and mercury biomagnification in polar bears ( Ursus maritimus )en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationum2  Department of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USAen_US
dc.contributor.affiliationother1  Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealanden_US
dc.contributor.affiliationother3  Geology and Geophysics Department, Yale University, P.O. Box 208109, New Haven, CT 06520-8109, USAen_US
dc.contributor.affiliationother4  Geological and Environmental Science Department, Stanford University, Stanford, CA 94305-2115, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73930/1/j.1751-8369.2009.00114.x.pdf
dc.identifier.doi10.1111/j.1751-8369.2009.00114.xen_US
dc.identifier.sourcePolar Researchen_US
dc.identifier.citedreferenceApplequist H., Drabaek I. & Asbirk S. 1985. Variation in mercury content of guillemot feathers over 150 years. Marine Pollution Bulletin 16, 244 – 248.en_US
dc.identifier.citedreferenceAriya P.A., Dastoor A.P., Amyot M., Schroeder W.H., Barrie L., Anlauf K., Raofie F., Ryzhkov A., Davignon D., Lalonde J. & Steffen A. 2004. The Arctic: a sink for mercury. Tellus, Series B: Chemical and Physical Meteorology 56, 397 – 403.en_US
dc.identifier.citedreferenceArrigo K.R., Robinson D.H., Dunbar R.B., Leventer A.R. & Lizotte M.P. 2003. Physical control of chlorophyll a, POC, and TPN distributions in the pack ice of the Ross Sea, Antarctica. Journal of Geophysical Research—Oceans 108, article no. 3316, doi: 10.1029/2001JC001138.en_US
dc.identifier.citedreferenceAtkinson A. 1998. Life cycle strategies of epipelagic copepods in the Southern Ocean. Journal of Marine Systems 15, 289 – 311.en_US
dc.identifier.citedreferenceAtwell L., Hobson K.A. & Welch H.E. 1998. Biomagnification and bioaccumulation of mercury in an Arctic marine food web: Insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 55, 1114 – 1121.en_US
dc.identifier.citedreferenceBentzen T.W., Follmann E.H., Amstrup S.C., York G.S., Wooler M.L. & O'Hara T.M. 2007. Variation in winter diet of southern Beaufort Sea polar bears inferred from stable isotope analysis. Canadian Journal of Zoology 85, 596 – 608.en_US
dc.identifier.citedreferenceBradstreet S.W. & Cross W.E. 1982. Trophic relationships at high ice edges. Arctic 35, 1 – 12.en_US
dc.identifier.citedreferenceBraune B.M., Outridge P.M., Fisk A.T., Muir D.C.G., Helm P.A., Hobbs K., Hoekstra P.F., Kuzyk Z.A., Kwan M., Letcher R.J., Lockhart W.L., Norstrom R.J., Stern G.A. & Stirling I. 2005. Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Science of the Total Environment 351–352, 4 – 56.en_US
dc.identifier.citedreferenceBudge S.M., Wooller M.J., Springer A.M., Iverson S.J., McRoy C.P. & Divoky G.J. 2008. Tracing carbon flow in an Arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157, 117 – 129.en_US
dc.identifier.citedreferenceCampbell L.M., Norstrom R.J., Hobson K.A., Muir D.C.G., Backus S. & Fisk A.T. 2005. Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Science of the Total Environment 351–352, 247 – 263.en_US
dc.identifier.citedreferenceDehn L., Follmann E.H., Thomas D.L., Sheffield G.G., Rosa C., Duffy L.K. & O'Hara T.M. 2006. Trophic relationships in an Arctic food web and implications for trace metal transfer. Science of the Total Environment 362, 103 – 123.en_US
dc.identifier.citedreferenceDehn L., Sheffield G.G., Follmann E.H., Duffy L.K., Thomas D.L., Bratton G.R., Taylor R.J. & O'Hara T.M. 2005. Trace elements in tissues of phocid seals harvested in the Alaskan and Canadian Arctic: influence of age on feeding ecology. Canadian Journal of Zoology 83, 726 – 746.en_US
dc.identifier.citedreferenceDietz R., Riget F., Boertmann D., Sonne C., Olsen M.T., Fjeldsa J., Falk K., Kirkegaard M., Egevang C., Asmucd G., Wille F. & Moller S. 2006. Time trends of mercury in feathers of west Greenland birds of prey during 1851–2003. Environmental Science and Technology 40, 5911 – 5916.en_US
dc.identifier.citedreferenceDietz R., Riget F., Born E.W., Sonne C., Grandjean P., Kirkegaard M., Olsen M.T., Asmund G., Renzoni A., BaagØe H. & Andreasen C. 2006. Trends in mercury in hair of Greenlandic polar bears ( Ursus maritimus ) during 1892–2001. Environmental Science and Technology 40, 1120 – 1125.en_US
dc.identifier.citedreferenceDietz R., Riget F. & Johansen P. 1996. Lead, cadmium, mercury, and selenium in Greenland marine animals. Science of the Total Environment 186, 67 – 93.en_US
dc.identifier.citedreferenceDouglas T.A., Sturm M., Simpson W.R., Blum J.D., Alvarez-Aviles L., Keeler G.J., Perovich D.K., Biswas A. & Johnson K. 2008. Influence of snow and ice crystal formation and accumulation on mercury deposition to the Arctic. Environmental Science and Technology 42, 1542 – 1551.en_US
dc.identifier.citedreferenceEaton R.D.P. & Farant J.P. 1982. The polar bear as a biological indicator of the environmental mercury burden. Arctic 35, 422 – 425.en_US
dc.identifier.citedreferenceFitzgerald W.F., Engstrom D.R., Lamborg C.H., Tseng C.M., Balcom P.H. & Hammerschmidt C.R. 2005. Modern and historic atmospheric mercury fluxes in northern Alaska: global sources and Arctic depletion. Environmental Science and Technology 39, 557 – 568.en_US
dc.identifier.citedreferenceGosselin M., LeVasseur M., Wheeler P.A., Horner R.A. & Booth B.C. 1997. New measurements of phytoplankton and ice algal production in the Arctic Ocean. Deep Sea Research Part I 44, 1623 – 1644.en_US
dc.identifier.citedreferenceHassol S.J. 2004. Impacts of a warming Arctic. Cambridge, UK: Cambridge University Press.en_US
dc.identifier.citedreferenceHilderbrand G.V., Farley S.D., Robbins C.T., Hanley T.A., Titus K. & Servheen C. 1996. Use of stable isotopes to determine diets of living and extinct bears. Canadian Journal of Zoology 74, 2080 – 2088.en_US
dc.identifier.citedreferenceHobson K.A., Fisk A., Karnovsky N., Holst M., Gagnon J.M. & Fortier M. 2002. A stable isotope (δ 13 C, δ 15 N) model for the North Water food web: implications for evaluating trophodynamics and the flow of energy and contaminants. Deep Sea Research Part II 49, 5131 – 5150.en_US
dc.identifier.citedreferenceHobson K.A., Sease J.L., Merrick R.L. & Piatt J.F. 1997. Investigating trophic relationships of pinnipeds in Alaska and Washington using stable isotope ratios of nitrogen and carbon. Marine Mammal Science 13, 114 – 132.en_US
dc.identifier.citedreferenceHobson K.A. & Welch H.E. 1992. Determination of trophic relationships within a High Arctic marine food web using δ 13 C and δ 15 N analysis. Marine Ecology Progress Series 84, 9 – 18.en_US
dc.identifier.citedreferenceKelly J.F. 2000. Stable isotopes of carbon and in the study of avian and mammalian trophic ecology. Canadian Journal of Zoology 78, 1 – 27.en_US
dc.identifier.citedreferenceKurle C.M. 2002. Stable-isotope ratios of blood components from captive northern fur seals ( Callorhinus ursinus ) and their diet: applications for studying the foraging ecology of wild otariids. Canadian Journal of Zoology 80, 902 – 909.en_US
dc.identifier.citedreferenceLu J.Y., Schroeder W.H., Barrie L.A., Steften A., Welch H.E., Martin K., Lockhart L., Hunt R.V., Boila G. & Richter A. 2001. Magnification of atmospheric mercury deposition to polar regions in springtime: the link to tropospheric ozone depletion chemistry. Geophysical Research Letters 28, 3219 – 3222.en_US
dc.identifier.citedreferenceMcMahon K.W., Ambrose W.G. Jr., Johnson B.J., Sun M.Y., Lopez G.R., Clough L.M. & Carroll M.L. 2006. Benthic community response to ice algae and phytoplankton in Ny Ålesund, Svalbard. Marine Ecology Progress Series 310, 1 – 14.en_US
dc.identifier.citedreferenceMuir D.C.G., Segstro M.D., Hobson K.A., Ford C.A., Stewart R.E.A. & Olpinski S. 1995. Can seal eating explain elevated levels of PCBs and organochlorine pesticides in walrus blubber from Eastern Hudson Bay (Canada)? Environmental Pollution 90, 335 – 348.en_US
dc.identifier.citedreferenceNorstrom R.J., Schweinsberg R.E. & Collins B.T. 1986. Heavy metals and essential elements in livers of the polar bear ( Ursus maritimus ) in the Canadian Arctic. Science of the Total Environment 48, 195 – 212.en_US
dc.identifier.citedreferenceOutridge P.M., Hobson K.A. & Savelle J.M. 2005. Changes in mercury and cadmium concentrations and the feeding behaviour of beluga ( Delphinapterus leucas ) near Somerset Island, Canada, during the 20th century. Science of the Total Environment 350, 106 – 118.en_US
dc.identifier.citedreferenceOutridge P.M., Stern G.A., Hamilton P.B., Percival J.B., McNeely R. & Lockhart W.L. 2005. Trace metal profiles in the varved sediment of an Arctic lake. Geochimica et Cosmochimica Acta 69, 4881 – 4894.en_US
dc.identifier.citedreferenceOverpeck J.T., Sturm M., Francis J.A., Perovich D.K., Serreze M.C., Benner R., Carmack E.C., Chapin Iii F.S., Gerlach S.C., Hamilton L.C., Hinzman L.D., Holland M., Huntington H.P., Key J.R., Lloyd A.H., MacDonald G.M., McFadden J., Noone D., Prowse T.D., Schlosser P. & VÖrÖsmarty C. 2005. Arctic system on trajectory to new, seasonally ice-free state. EOS, Transactions of the American Geophysical Union 86, 312 – 313.en_US
dc.identifier.citedreferencePoulain A.J., Garcia E., Amyot M., Campbell P.G.C., Raofie F. & Ariya P.A. 2007. Biological and chemical redox transformations of mercury in fresh and salt waters of the High Arctic during spring and summer. Environmental Science and Technology 41, 1883 – 1888.en_US
dc.identifier.citedreferenceQuevauviller P., Maier E.A., Vercoutere K., Muntau H. & Griepink B. 1992. Certified reference material (CRM 397) for the quality control of trace element analysis of human hair. Fresenius' Journal of Analytical Chemistry 343, 335 – 338.en_US
dc.identifier.citedreferenceRamsay M.A. & Hobson K.A. 1991. Polar bears make little use of terrestrial food webs: evidence from stable-carbon isotope analysis. Oecologia 86, 598 – 600.en_US
dc.identifier.citedreferenceSchell D.M., Barnett B.A. & Vinette K.A. 1998. Carbon and nitrogen isotope ratios in zooplankton of the Bering, Chukchi and Beaufort seas. Marine Ecology Progress Series 162, 11 – 23.en_US
dc.identifier.citedreferenceSchuster P.F., Krabbenhoft D.P., Naftz D.L., Cecil L.D., Olson M.L., Dewild J.F., Susong D.D., Green J.R. & Abbott M.L. 2002. Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. Environmental Science and Technology 36, 2303 – 2310.en_US
dc.identifier.citedreferenceSmetacek V. & Nicol S. 2005. Polar ocean ecosystems in a changing world. Nature 437, 362 – 368.en_US
dc.identifier.citedreferenceSmith T.G. & Armstrong F.A.J. 1975. Mercury in seals, terrestrial carnivores, and principal food items of the Inuit, from Holman, N.W.T. Journal of the Fisheries Research Board of Canada 32, 795 – 801.en_US
dc.identifier.citedreferenceTamelander T., Renaud P.E., Hop H., Carroll M.L., Ambrose W.G. Jr. & Hobson K.A. 2006. Trophic relationships and pelagic–benthic coupling during summer in the Barents Sea Marginal Ice Zone, revealed by stable carbon and nitrogen isotope measurements. Marine Ecology Progress Series 310, 33 – 46.en_US
dc.identifier.citedreferenceTremblay J.E., Michel C., Hobson K.A., Gosselin M. & Price N.M. 2006. Bloom dynamics in early opening waters of the Arctic Ocean. Limnology and Oceanography 51, 900 – 912.en_US
dc.identifier.citedreferenceWagemann R., Innes S. & Richard P.R. 1996. Overview and regional and temporal differences of heavy metals in Arctic whales and ringed seals in the Canadian Arctic. Science of the Total Environment 186, 41 – 66.en_US
dc.identifier.citedreferenceWagemann R., Trebacz E., Boila G. & Lockhart W.L. 1998. Methylmercury and total mercury in tissue of Arctic marine mammals. Science of the Total Environment 218, 19 – 31.en_US
dc.identifier.citedreferenceWelch H.E. 1992. Energy flow through the marine ecosystem of the Lancaster Sound region, Arctic Canada. Arctic 45, 343 – 357.en_US
dc.identifier.citedreferenceWoshner V.M., O'Hara T.M., Bratton G.R. & Beasley V.R. 2001. Concentrations and interactions of selected essential and non-essential elements in ringed seals and polar bears of Arctic Alaska. Journal of Wildlife Diseases 37, 711 – 721.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.