Show simple item record

Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects

dc.contributor.authorBall, Becky A.en_US
dc.contributor.authorHunter, Mark D.en_US
dc.contributor.authorKominoski, John S.en_US
dc.contributor.authorSwan, Christopher M.en_US
dc.contributor.authorBradford, Mark A.en_US
dc.date.accessioned2010-06-01T20:50:43Z
dc.date.available2010-06-01T20:50:43Z
dc.date.issued2008-03en_US
dc.identifier.citationBall, Becky A.; Hunter, Mark D.; Kominoski, John S.; Swan, Christopher M.; Bradford, Mark A. (2008). "Consequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effects." Journal of Ecology 96(2): 303-313. <http://hdl.handle.net/2027.42/73943>en_US
dc.identifier.issn0022-0477en_US
dc.identifier.issn1365-2745en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73943
dc.description.abstract1.   Although litter decomposition is a fundamental ecological process, most of our understanding comes from studies of single-species decay. Recently, litter-mixing studies have tested whether monoculture data can be applied to mixed-litter systems. These studies have mainly attempted to detect non-additive effects of litter mixing, which address potential consequences of random species loss – the focus is not on which species are lost, but the decline in diversity per se . 2.   Under global change, species loss is likely to be non-random, with some species more vulnerable to extinction than others. Under such scenarios, the effects of individual species (additivity) as well as of species interactions (non-additivity) on decomposition rates are of interest. 3.   To examine potential impacts of non-random species loss on ecosystems, we studied additive and non-additive effects of litter mixing on decomposition. A full-factorial litterbag experiment was conducted using four deciduous leaf species, from which mass loss and nitrogen content were measured. Data were analysed using a statistical approach that first looks for additive identity effects based on the presence or absence of species and then significant species interactions occurring beyond those. It partitions non-additive effects into those caused by richness and/or composition. 4.   This approach addresses questions key to understanding the potential effects of species loss on ecosystem processes. If additive effects dominate, the consequences for decomposition dynamics will be predictable based on our knowledge of individual species, but not statistically predictable if non-additive effects dominate. 5.   We found additive (identity) effects on mass loss and non-additive (composition) effects on litter nitrogen dynamics, suggesting that non-random species loss could significantly affect this system. We were able to identify the species responsible for effects that would otherwise have been considered idiosyncratic or absent when analysed by the methods used in previous work. 6.   Synthesis . We observed both additive and non-additive effects of litter-mixing on decomposition, indicating consequences of non-random species loss. To predict the consequences of global change for ecosystem functioning, studies should examine the effects of both random and non-random species loss, which will help identify the mechanisms that influence the response of ecosystems to environmental change.en_US
dc.format.extent488169 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2008 British Ecological Societyen_US
dc.subject.otherBiodiversityen_US
dc.subject.otherDecompositionen_US
dc.subject.otherEcosystem Functionen_US
dc.subject.otherLitter Mixturesen_US
dc.subject.otherLitter Qualityen_US
dc.subject.otherNon-random Species Lossen_US
dc.subject.otherRandom Species Lossen_US
dc.subject.otherSpecies Compositionen_US
dc.subject.otherSpecies Diversityen_US
dc.titleConsequences of non-random species loss for decomposition dynamics: experimental evidence for additive and non-additive effectsen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumSchool of Natural Resources and Environment, and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA; anden_US
dc.contributor.affiliationotherOdum School of Ecology, University of Georgia, Athens, GA 30602, USA;en_US
dc.contributor.affiliationotherGeography and Environmental Systems, University of Maryland Baltimore County, 211 Sondheim Hall, 1000 Hilltop Circle, Baltimore, MD 21250, USAen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73943/1/j.1365-2745.2007.01346.x.pdf
dc.identifier.doi10.1111/j.1365-2745.2007.01346.xen_US
dc.identifier.sourceJournal of Ecologyen_US
dc.identifier.citedreferenceAber, J.D. & Melillo, J.M. ( 2001 ) Chemical properties of litter and soil organic matter: the decomposition continuum. Terrestrial Ecosystems, pp. 205 – 226. Academic Press, San Diego.en_US
dc.identifier.citedreferenceAber, J.D., Melillo, J.M. & McClaugherty, C.A. ( 1990 ) Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems. Canadian Journal of Botany, 68, 2201 – 2208.en_US
dc.identifier.citedreferenceAerts, R. ( 1997 ) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos, 79, 439 – 449.en_US
dc.identifier.citedreferenceAtlantic Oceanographic and Meteorological Laboratory ( 2006 ) HURDAT Re-analysis Project. < http://www.aoml.noaa.gov/hrd/hurdat/ >.en_US
dc.identifier.citedreferenceBardgett, R.D. & Shine, A. ( 1999 ) Linkages between plant litter diversity, soil microbial biomass and ecosystem function in temperate grasslands. Soil Biology and Biochemistry, 31, 317 – 321.en_US
dc.identifier.citedreferenceBeard, K.H., Vogt, K.A., Vogt, D.J., Scatena, F.N., Covich, A.P., Sigurdardottir, R., Siccama, T.G. & Crowl, T.A. ( 2005 ) Structural and functional responses of a subtropical forest to 10 years of hurricanes and droughts. Ecological Monographs, 75, 345 – 361.en_US
dc.identifier.citedreferenceBerg, B. ( 2000 ) Litter decomposition and organic matter turnover in northern forest soils. Forest Ecology and Management, 133, 13 – 22.en_US
dc.identifier.citedreferenceBlair, J.M., Parmelee, R.W. & Beare, M.H. ( 1990 ) Decay-rates, nitrogen fluxes, and decomposer communities of single-species and mixed-species foliar litter. Ecology, 71, 1976 – 1985.en_US
dc.identifier.citedreferenceChapman, K., Whittaker, J.B. & Heal, O.W. ( 1988 ) Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agriculture Ecosystems and Environment, 24, 33 – 40.en_US
dc.identifier.citedreferenceCrawley, M.J. ( 2002 ) Nested designs and variance components analysis. Statistical Computing: An Introduction to Data Analysis using S-Plus, pp. 361 – 375. John Wiley & Sons, Ltd., West Sussex.en_US
dc.identifier.citedreferenceCross, M.S. & Harte, J. ( 2007 ) Compensatory responses to loss of warming-sensitive plant species. Ecology, 88, 740 – 748.en_US
dc.identifier.citedreferenceDrake, J.M. ( 2003 ) Why does grassland productivity increase with species richness? Disentangling species richness and composition with tests for overyielding and superyielding in biodiversity experiments. Proceedings of the Royal Society of London Series B – Biological Sciences, 270, 1713 – 1719.en_US
dc.identifier.citedreferenceEllison, A.M., Bank, M.S., Clinton, B.D., Colburn, E.A., Elliott, K., Ford, C.R., Foster, D.R., Kloeppel, B.D., Knoepp, J.D., Lovett, G.M., Mohan, J., Orwig, D.A., Rodenhouse, N.L., Sobczak, W.V., Stinson, K.A., Stone, J.K., Swan, C.M., Thompson, J., Von Holle, B. & Webster, J.R. ( 2005 ) Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Frontiers in Ecology and the Environment, 3, 479 – 486.en_US
dc.identifier.citedreferenceFyles, J.W. & Fyles, I.H. ( 1993 ) Interaction of douglas-fir with red alder and salal foliage litter during decomposition. Canadian Journal of Forest Research – Revue Canadienne De Recherche Forestiere, 23, 358 – 361.en_US
dc.identifier.citedreferenceGartner, T.B. & Cardon, Z.G. ( 2004 ) Decomposition dynamics in mixed-species leaf litter. Oikos, 104, 230 – 246.en_US
dc.identifier.citedreferenceGartner, T.B. & Cardon, Z.G. ( 2006 ) Site of leaf origin affects how mixed litter decomposes. Soil Biology and Biochemistry, 38, 2307 – 2317.en_US
dc.identifier.citedreferenceGrime, J.P. ( 1998 ) Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 902 – 910.en_US
dc.identifier.citedreferenceGross, K. & Cardinale, B.J. ( 2005 ) The functional consequences of random vs. ordered species extinctions. Ecology Letters, 8, 409 – 418.en_US
dc.identifier.citedreferenceHÄttenschwiler, S. & Gasser, P. ( 2005 ) Soil animals alter plant litter diversity effects on decomposition. Proceedings of the National Academy of Sciences of the United States of America, 102, 1519 – 1524.en_US
dc.identifier.citedreferenceHÄttenschwiler, S., Tiunov, A.V. & Scheu, S. ( 2005 ) Biodiversity and litter decomposition in terrestrial ecosystems. Annual Review of Ecology Evolution and Systematics, 36, 191 – 218.en_US
dc.identifier.citedreferenceHeneghan, L., Coleman, D.C., Crossley, D.A. & Zou, X.M. ( 1999 ) Nitrogen dynamics in decomposing chestnut oak ( Quercus prinus L.) in mesic temperate and tropical forest. Applied Soil Ecology, 13, 169 – 175.en_US
dc.identifier.citedreferenceHou, P.C.L., Zou, X.M., Huang, C.Y. & Chien, H.J. ( 2005 ) Plant litter decomposition influenced by soil animals and disturbance in a subtropical rainforest of Taiwan. Pedobiologia, 49, 539 – 547.en_US
dc.identifier.citedreferenceJohnson, M.T.J., Lajeunesse, M.J. & Agrawal, A.A. ( 2006 ) Additive and interactive effects of plant genotypic diversity on arthropod communities and plant fitness. Ecology Letters, 9, 24 – 34.en_US
dc.identifier.citedreferenceKominoski, J.S., Pringle, C.M., Ball, B.A., Bradford, M.A., Coleman, D.C., Hall, D.B. & Hunter, M.D. ( 2007 ) Nonadditive effects of leaf litter species diversity on breakdown dynamics in a detritus-based stream. Ecology, 88, 1167 – 1176.en_US
dc.identifier.citedreferenceLarsen, T.H., Williams, N.M. & Kremen, C. ( 2005 ) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecology Letters, 8, 538 – 547.en_US
dc.identifier.citedreferenceLeroy, C.J. & Marks, J.C. ( 2006 ) Litter quality, stream characteristics and litter diversity influence decomposition rates and macroinvertebrates. Freshwater Biology, 51, 605 – 617.en_US
dc.identifier.citedreferenceLoreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, D.U., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D. & Wardle, D.A. ( 2001 ) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 294, 804 – 808.en_US
dc.identifier.citedreferenceMcClaugherty, C. & Berg, B. ( 1987 ) Cellulose, lignin and nitrogen concentrations as rate regulating factors in late stages of forest litter decomposition. Pedobiologia, 30, 101 – 112.en_US
dc.identifier.citedreferenceMcTiernan, K.B., Ineson, P. & Coward, P.A. ( 1997 ) Respiration and nutrient release from tree leaf litter mixtures. Oikos, 78, 527 – 538.en_US
dc.identifier.citedreferenceMikola, J., Salonen, V. & SetÄlÄ, H. ( 2002 ) Studying the effects of plant species richness on ecosystem functioning: does the choice of experimental design matter? Oecologia, 133, 594 – 598.en_US
dc.identifier.citedreferenceMoore, J.C., Berlow, E.L., Coleman, D.C., de Ruiter, P.C., Dong, Q., Hastings, A., Johnson, N.C., McCann, K.S., Melville, K., Morin, P.J., Nadelhoffer, K., Rosemond, A.D., Post, D.M., Sabo, J.L., Scow, K.M., Vanni, M.J. & Wall, D.H. ( 2004 ) Detritus, trophic dynamics and biodiversity. Ecology Letters, 7, 584 – 600.en_US
dc.identifier.citedreferenceMoorhead, D.L. & Sinsabaugh, R.L. ( 2006 ) A theoretical model of litter decay and microbial interaction. Ecological Monographs, 76, 151 – 174.en_US
dc.identifier.citedreferenceOrwig, D.A. & Foster, D.R. ( 1998 ) Forest response to the introduced hemlock woolly adelgid in southern New England, USA. Journal of the Torrey Botanical Society, 125, 60 – 73.en_US
dc.identifier.citedreferenceOstrofsky, M.L. ( 2007 ) A comment on the use of exponential decay models to test nonadditive processing hypotheses in multispecies mixtures of litter. Journal of the North American Benthological Society, 26, 23 – 27.en_US
dc.identifier.citedreferenceRizzo, D.M., Garbelotto, M., Davidson, J.M., Slaughter, G.W. & Koike, S.T. ( 2002 ) Phytophthora ramorum as the cause of extensive mortality of Quercus spp. and Lithocarpus densiflorus in California. Plant Disease, 86, 205 – 214.en_US
dc.identifier.citedreferenceRustad, L.E. ( 1994 ) Element dynamics along a decay continuum in a red spruce ecosystem in Maine, USA. Ecology, 75, 867 – 879.en_US
dc.identifier.citedreferenceSalamanca, E.F., Kaneko, N. & Katagiri, S. ( 1998 ) Effects of leaf litter mixtures on the decomposition of Quercus serrata and Pinus densiflora using field and laboratory microcosm methods. Ecological Engineering, 10, 53 – 73.en_US
dc.identifier.citedreferenceSchimel, J.P. & HÄttenschwiler, S. ( 2007 ) Nitrogen transfer between decomposing leaves of different N status. Soil Biology and Biochemistry, 39, 1428 – 1436.en_US
dc.identifier.citedreferenceSchlÄpfer, F., Pfisterer, A.B. & Schmid, B. ( 2005 ) Non-random species extinction and plant production: implications for ecosystem functioning. Journal of Applied Ecology, 42, 13 – 24.en_US
dc.identifier.citedreferenceSchnitzer, M. & Khan, S.U. ( 1978 ) Soil Organic Matter. Elsevier Scientific Publishing Company, New York, NY.en_US
dc.identifier.citedreferenceSchwarz, P.A., Fahey, T.J., Martin, C.W., Siccama, T.G. & Bailey, A. ( 2001 ) Structure and composition of three northern hardwood-conifer forests with differing disturbance histories. Forest Ecology and Management, 144, 201 – 212.en_US
dc.identifier.citedreferenceSchweitzer, J.A., Bailey, J.K., Hart, S.C. & Whitham, T.G. ( 2005 ) Nonadditive effects of mixing cottonwood genotypes on litter decomposition and nutrient dynamics. Ecology, 86, 2834 – 2840.en_US
dc.identifier.citedreferenceSeastedt, T.R. ( 1984 ) The role of microarthropods in decomposition and mineralization processes. Annual Review of Entomology, 29, 25 – 46.en_US
dc.identifier.citedreferenceSmith, M.D. & Knapp, A.K. ( 2003 ) Dominant species maintain ecosystem function with non-random species loss. Ecology Letters, 6, 509 – 517.en_US
dc.identifier.citedreferenceSmith, V.C. & Bradford, M.A. ( 2003a ) Do non-additive effects on decomposition in litter-mix experiments result from differences in resource quality between litters? Oikos, 102, 235 – 242.en_US
dc.identifier.citedreferenceSmith, V.C. & Bradford, M.A. ( 2003b ) Litter quality impacts on grassland litter decomposition are differently dependent on soil fauna across time. Applied Soil Ecology, 24, 197 – 203.en_US
dc.identifier.citedreferenceStevenson, F.J. ( 1994 ) Humus Chemistry: Genesis, Composition, Reactions. John Wiley & Sons, Inc., New York, NY.en_US
dc.identifier.citedreferenceSuding, K.N., Miller, A.E., Bechtold, H. & Bowman, W.D. ( 2006 ) The consequence of species loss on ecosystem nitrogen cycling depends on community compensation. Oecologia, 149, 141 – 149.en_US
dc.identifier.citedreferenceSwan, C. & Palmer, M. ( 2006 ) Composition of speciose leaf litter alters stream detritivore growth, feeding activity and leaf breakdown. Oecologia, 147, 469 – 478.en_US
dc.identifier.citedreferenceSwan, C.M. & Palmer, M.A. ( 2004 ) Leaf diversity alters litter breakdown in a Piedmont stream. Journal of the North American Benthological Society, 23, 15 – 28.en_US
dc.identifier.citedreferenceSwank, W.T. & Crossley, D.A. ( 1988 ) Forest hydrology and ecology at Coweeta. Ecological Studies: Analysis and Synthesis (eds W.D. Billings, F. Golley, O.L. Lange, J.S. Olson & H. Remmert ), p. 469. Springer-Verlag, New York.en_US
dc.identifier.citedreferenceSwift, M.J., Heal, O.W. & Anderson, J.M. ( 1979 ) Decomposition in Terrestrial Ecosystems. University of California Press, Los Angeles.en_US
dc.identifier.citedreferenceTaylor, B.R., Parkinson, D. & Parsons, W.F.J. ( 1989 ) Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology, 70, 97 – 104.en_US
dc.identifier.citedreferenceVitousek, P.M., Mooney, H.A., Lubchenco, J. & Melillo, J.M. ( 1997 ) Human domination of Earth's ecosystems. Science, 277, 494 – 499.en_US
dc.identifier.citedreferenceWardle, D.A., Bonner, K.I. & Nicholson, K.S. ( 1997 ) Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function. Oikos, 79, 247 – 258.en_US
dc.identifier.citedreferenceWright, C.J. & Coleman, D.C. ( 1999 ) The effects of disturbance events on labile phosphorus fractions and total organic phosphorus in the southern Appalachians. Soil Science, 164, 391 – 402.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.