Show simple item record

BAC transgenic analysis reveals enhancers sufficient for Hoxa13 and neighborhood gene expression in mouse embryonic distal limbs and genital bud

dc.contributor.authorLehoczky, Jessica A.en_US
dc.contributor.authorInnis, Jeffrey W.en_US
dc.date.accessioned2010-06-01T20:51:12Z
dc.date.available2010-06-01T20:51:12Z
dc.date.issued2008-07en_US
dc.identifier.citationLehoczky, Jessica A.; Innis, Jeffrey W. (2008). "BAC transgenic analysis reveals enhancers sufficient for Hoxa13 and neighborhood gene expression in mouse embryonic distal limbs and genital bud." Evolution & Development 10(4 ): 421-432. <http://hdl.handle.net/2027.42/73951>en_US
dc.identifier.issn1520-541Xen_US
dc.identifier.issn1525-142Xen_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73951
dc.identifier.urihttp://www.ncbi.nlm.nih.gov/sites/entrez?cmd=retrieve&db=pubmed&list_uids=18638319&dopt=citationen_US
dc.description.abstractWe previously demonstrated that a ∼1 Mb domain of genes upstream of and including Hoxa13 is co-expressed in the developing mouse limbs and genitalia. A highly conserved non-coding sequence, mmA13CNS, was shown to be insufficient in transgenic mice to direct precise Hoxa13 -like expression in the limb buds or genital bud, although some LacZ expression from the transgene was reproducibly found in these tissues. In this report, we used Β -globin minimal promoter LacZ recombinant BAC transgenes encompassing mmA13CNS to identify a single critical region involved in mouse Hoxa13 -like embryonic genital bud expression. By analyzing the expression patterns of these overlapping BAC clones in transgenic mice, we show that at least two sequences remote to the HoxA cluster are required collectively to drive Hoxa13 -like expression in developing distal limbs. Given that the paralogous posterior HoxD and neighboring genes have been shown to be under the influence of long-range distal limb and genital bud enhancers, we hypothesize that both long-range enhancers have one ancestral origin, which diverged in both sequence and function after the HoxA/D cluster duplication.en_US
dc.format.extent3475452 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Incen_US
dc.rightsJournal compilation © 2008 Blackwell Publishing Inc.en_US
dc.titleBAC transgenic analysis reveals enhancers sufficient for Hoxa13 and neighborhood gene expression in mouse embryonic distal limbs and genital buden_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelEcology and Evolutionary Biologyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Human Genetics, University of Michigan, Ann Arbor, MI 48109-5618, USAen_US
dc.contributor.affiliationumDepartment of Pediatrics, University of Michigan, Ann Arbor, MI 48109-5718, USAen_US
dc.contributor.affiliationotherDepartment of Genetics, Harvard Medical School, Boston, MA 02115, USAen_US
dc.identifier.pmid18638319en_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73951/1/j.1525-142X.2008.00253.x.pdf
dc.identifier.doi10.1111/j.1525-142X.2008.00253.xen_US
dc.identifier.sourceEvolution & Developmenten_US
dc.identifier.citedreferenceDuboule, D., and Morata, G. 1994. Colinearity and functional hierarchy among genes of the homeotic complexes. Trends Genet. 10: 358.en_US
dc.identifier.citedreferenceFromental-Ramain, C., Warot, X., Messadecq, N., LeMeur, M., Dolle, P., and Chambon, P. 1996. Hoxa-13 and Hoxd-13 play a crucial role in the patterning of the limb autopod. Development (Cambridge, England) 122: 2997.en_US
dc.identifier.citedreferenceGodwin, A. R., and Capecchi, M. R. 1998. Hoxc13 mutant mice lack external hair. Genes Dev 12: 11 – 20.en_US
dc.identifier.citedreferenceGodwin, A. R., Stadler, H. S., Nakamura, K., and Capecchi, M. R. 1998. Detection of targeted GFP-Hox gene fusions during mouse embryogenesis. Proc. Natl. Acad. Sci. USA 95: 13042 – 13047.en_US
dc.identifier.citedreferenceGonzalez, F., Duboule, D., and Spitz, F. 2007. Transgenic analysis of Hoxd gene regulation during digit development. Dev. Biol. 306: 847 – 859.en_US
dc.identifier.citedreferenceGoodman, F. R., et al. 2000. Novel HOXA13 mutations and the phenotypic spectrum of hand-foot-genital syndrome. Am. J. Hum. Genet. 67: 197.en_US
dc.identifier.citedreferenceHaack, H., and Gruss, P. 1993. The establishment of murine Hox-1 expression domains during patterning of the limb. Dev. Biol. 157: 410 – 422.en_US
dc.identifier.citedreferenceHerault, Y., Beckers, J., Kondo, T., Fraudeau, N., and Duboule, D. 1998. Genetic analysis of a Hoxd-12 regulatory element reveals global versus local modes of controls in the HoxD complex. Development (Cambridge, England) 125: 1669.en_US
dc.identifier.citedreferenceInnis, J. W., et al. 2004. Polyalanine expansion in HOXA13: three new affected families and the molecular consequences in a mouse model. Hum. Mol. Genet. 13: 2841 – 2851.en_US
dc.identifier.citedreferenceKappen, C., Schughart, K., and Ruddle, F. H. 1989. Two steps in the evolution of Antennapedia-class vertebrate homeobox genes. Proc. Natl. Acad. Sci. USA 86: 5459 – 5463.en_US
dc.identifier.citedreferenceKhandekar, M., Suzuki, N., Lewton, J., Yamamoto, M., and Engel, J. D. 2004. Multiple, distant Gata2 enhancers specify temporally and tissue-specific patterning in the developing urogenital system. Mol. Cell. Biol. 24: 10263 – 10276.en_US
dc.identifier.citedreferenceLee, E. C., et al. 2001. A highly efficient Escherichia coli -based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics 73: 56 – 65.en_US
dc.identifier.citedreferenceLehoczky, J. A., Williams, M. E., and Innis, J. W. 2004. Conserved expression domains for genes upstream and within the HoxA and HoxD clusters suggests a long-range enhancer existed before cluster duplication. Evol. Dev. 6: 423 – 430.en_US
dc.identifier.citedreferenceMcGinnis, W., and Krumlauf, R. 1992. Homeobox genes and axial patterning. Cell 68: 283.en_US
dc.identifier.citedreferenceMortlock, D. P., and Innis, J. W. 1997. Mutation of HOXA13 in hand-foot-genital syndrome. Nat. Genet. 15: 179.en_US
dc.identifier.citedreferenceMortlock, D. P., Post, L. C., and Innis, J. W. 1996. The molecular basis of hypodactyly (Hd): a deletion in Hoxa 13 leads to arrest of digital arch formation. Nat. Genet. 13: 284.en_US
dc.identifier.citedreferencePrince, V. 2002. The Hox Paradox: more complex(es) than imagined. Dev. Biol. 249: 1 – 15.en_US
dc.identifier.citedreferenceRuddle, F. H., Bartels, J. L., Bentley, K. L., Kappen, C., Murtha, M. T., and Pendleton, J. W. 1994. Evolution of Hox genes. Ann. Rev. Genet. 28: 423.en_US
dc.identifier.citedreferenceScott, V., Morgan, E. A., and Stadler, H. S. 2005. Genitourinary functions of Hoxa13 and Hoxd13. J. Biochem. (Tokyo) 137: 671 – 676.en_US
dc.identifier.citedreferenceSpitz, F., Gonzalez, F., and Duboule, D. 2003. A global control region defines a chromosomal regulatory landscape containing the HoxD cluster. Cell 113: 405.en_US
dc.identifier.citedreferenceSpitz, F., Gonzalez, F., Peichel, C., Vogt, T. F., Duboule, D., and Zakany, J. 2001. Large scale transgenic and cluster deletion analysis of the HoxD complex separate an ancestral regulatory module from evolutionary innovations. Genes Dev. 15: 2209 – 2214.en_US
dc.identifier.citedreferenceStadler, H. S., Higgins, K. M., and Capecchi, M. R. 2001. Loss of Eph-receptor expression correlates with loss of cell adhesion and chondrogenic capacity in Hoxa13 mutant limbs. Development (Cambridge, England) 128: 4177.en_US
dc.identifier.citedreferenceVeraksa, A., Del Campo, M., and McGinnis, W. 2000. Developmental patterning genes and their conserved functions: from model organisms to humans. Mol. Genet. Metab. 69: 85.en_US
dc.identifier.citedreferenceWarot, X., Fromental-Ramain, C., Fraulob, V., Chambon, P., and Dolle, P. 1997. Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development (Cambridge, England) 124: 4781.en_US
dc.identifier.citedreferenceWilliams, T. M., Williams, M. E., and Innis, J. W. 2005. Range of HOX/TALE superclass associations and protein domain requirements for HOXA13: MEIS interaction. Dev. Biol. 277: 457 – 471.en_US
dc.identifier.citedreferenceYang, X. W., Model, P., and Heintz, N. 1997. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15: 859 – 865.en_US
dc.identifier.citedreferenceYu, D., Ellis, H. M., Lee, E. C., Jenkins, N. A., Copeland, N. G., and Court, D. L. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97: 5978 – 5983.en_US
dc.identifier.citedreferenceZakany, J., Fromental-Ramain, C., Warot, X., and Duboule, D. 1997. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc. Natl. Acad. Sci. USA 94: 13695 – 13700.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.