Show simple item record

What controls the lateral variation of large earthquake occurrence along the Japan Trench?

dc.contributor.authorTanioka, Yuichiroen_US
dc.contributor.authorRuff, Larry J.en_US
dc.contributor.authorSatake, Kenjien_US
dc.date.accessioned2010-06-01T20:53:38Z
dc.date.available2010-06-01T20:53:38Z
dc.date.issued1997-09en_US
dc.identifier.citationTanioka, Yuichiro; Ruff, Larry; Satake, Kenji (1997). "What controls the lateral variation of large earthquake occurrence along the Japan Trench?." Island Arc 6(3): 261-266. <http://hdl.handle.net/2027.42/73990>en_US
dc.identifier.issn1038-4871en_US
dc.identifier.issn1440-1738en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/73990
dc.description.abstractThe lateral (along trench axis) variation in the mode of large earthquake occurrence near the northern Japan Trench is explained by the variation in surface roughness of the subducting plate. The surface roughness of the ocean bottom near the trench is well correlated with the large-earthquake occurrence. The region where the ocean bottom is smooth is correlated with‘typical’large underthrust earthquakes (e.g. the 1968 Tokachioki event) in the deeper part of the seismogenic plate interface, and there are no earthquakes in the shallow part (aseismic zone). The region where the ocean bottom is rough (well-developed horst and graben structure) is correlated with large normal faulting earthquakes (e.g. the 1933 Sanriku event) in the outer-rise region, and large tsunami earthquakes (e.g. the 1896 Sanriku event) in the shallow region of the plate interface zone. In the smooth surface region, the coherent metamorphosed sediments form a homogeneous, large and strong contact zone between the plates. The rupture of this large strong contact causes great under-thrust earthquakes. In the rough surface region, large outer-rise earthquakes enhance the well-developed horst and grabens. As these structure are subducted with sediments in the graben part, the horsts create enough contact with the overriding block to cause an earthquake in the shallow part of the interface zone, and this earthquake is likely to be a tsunami earthquake. When the horst and graben structure is further subducted, many small strong contacts between the plates are formed, and they can cause only small underthrust earthquakes.en_US
dc.format.extent624498 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rights1997 Blackwell Science Pvt. Ltd.en_US
dc.subject.otherEarthquake Occurrenceen_US
dc.subject.otherJapan Trenchen_US
dc.subject.otherSubduction Zoneen_US
dc.titleWhat controls the lateral variation of large earthquake occurrence along the Japan Trench?en_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelGeology and Earth Sciencesen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Geological Sciences, University of Michigan, Ann Arbor, MI 48109-1063, USAen_US
dc.contributor.affiliationotherSeismotectonics Section, Geological Survey of Japan, Tsukuba 305, Japanen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/73990/1/j.1440-1738.1997.tb00176.x.pdf
dc.identifier.doi10.1111/j.1440-1738.1997.tb00176.xen_US
dc.identifier.sourceIsland Arcen_US
dc.identifier.citedreferenceAbe K. 1979. Size of great earthquakes of 1873-1974 inferred from tsunami data. Journal of Geophysical Research 84, 1561 – 68.en_US
dc.identifier.citedreferenceAbe K. 1994. Instrumental magnitudes of historical earthquakes, 1892–1898. Bulletin of the Seismological Society of America 84, 415 – 25.en_US
dc.identifier.citedreferenceAida I. 1977. Simulation of large tsunamis occurring in the past off the coast of the Sanriku district. Bulletin of the Earthquake Research Institute of the University of Tokyo 52, 71 – 101.en_US
dc.identifier.citedreferenceByrne D. E., Davies D. M. & Sykes L. R. 1988. Loci and maximum size of thrust earthquakes and the mechanics of the shallow region of subduction zones. Tectonics 7, 833 – 57.en_US
dc.identifier.citedreferenceCloos M. & Sherive R. L. 1988. Subduction-channel of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins: 2. Implications and discussion. Pure and Applied Geophysics 128, 501 – 45.en_US
dc.identifier.citedreferenceHilde T. W. C. 1983. Sediment subduction vs accretion around the Pacific. Tectonophysics 99, 381 – 97.en_US
dc.identifier.citedreferenceHirata N., Kanazawa T., Suyehiro K., Iwasaki T. & Shimamura H. 1989. Observation of microseismicity in the southern Kuril trench area by arrays of ocean bottom seismometers. Geophysical Journal International 98, 55 – 68.en_US
dc.identifier.citedreferenceHonza E. 1980. Pre-sites survey of the Japan trench transect. Initial Reports of the Deep Sea Drilling Project 56/51, 449 – 58.en_US
dc.identifier.citedreferenceHyndman R. D., Yamano M. & Oleskevich D. A. 1997. The seismogenic zone of subduction thrust faults. The Island Arc 6, 244 – 260.en_US
dc.identifier.citedreferenceKanamori H. 1971. Seismological evidence for a lithospheric normal faulting: The Sanriku earthquake of 1933. Physics of Earth and Planetary Interiors 4, 289 – 300.en_US
dc.identifier.citedreferenceKanamori H. 1972. Mechanism of tsunami earthquakes. Physics of Earth and Planetary Interiors 6, 246 – 59.en_US
dc.identifier.citedreferenceKasahara M. 1975. A fault model of the Tokachioki earthquake of 1952 (in Japanese). Program and Abstract of Seismological Society of Japan 2, 90. Seismological Society of Japan, Tokyo.en_US
dc.identifier.citedreferenceKawakatsu H. & Seno T. 1983. Triple seismic zone and the regional variation of seismicity along the northern Honshu arc. Journal of Geophysical Research 88, 4215 – 30.en_US
dc.identifier.citedreferenceNasu N., VON Huene, R., Ishiwada Y., Langseth T., Bruns T. & Honza E. 1980. Interpretation of multichannel seismic reflection data, Legs 56 and 57, Japan trench transect. Initial Reports of the Deep Sea Drilling Project 56/51, 489 – 504.en_US
dc.identifier.citedreferenceNishizawa A., Kanazawa T., Iwasaki T., Shimamura H. & Hirata N. 1992. Spatial distribution of earthquakes associated with the Pacific Plate subduction off northeastern Japan revealed by the ocean bottom and land observation. Physics of Earth and Planetary Interiors 75, 165 – 73.en_US
dc.identifier.citedreferenceOgawa Y. 1994. Characteristics and origin of the cracks observed by research submersible ‘Shinkai 6500’ in the oceanward slope of the northern Japan Trench. Journal of Geography, Tokyo Geographical Society 103, 706 – 18 ( in Japanese ).en_US
dc.identifier.citedreferenceOkal E. A. 1988. Seismic parameters controlling far-field tsunami amplitudes: A review. Natural Hazards 1, 67 – 96.en_US
dc.identifier.citedreferenceRuff L. J. 1989. Do trench sediments affect great earthquake occurrence in subduction zones ? Pure and Applied Geophysics. 129, 263 – 82.en_US
dc.identifier.citedreferenceSeno T., Shimazaki K., Somerville P., Sudo K. & Eguchi T. 1980. Rupture process of the Miyagi-oki, Japan, earthquake of June 12, 1978. Physics of Earth and Planetary Interiors 23, 39 – 61.en_US
dc.identifier.citedreferenceSchwartz S. Y. & Ruff L. J. 1987. Asperity distribution and earthquake occurrence in the southern Kurile island arc. Physics of Earth and Planetary Interiors 49, 54 – 77.en_US
dc.identifier.citedreferenceSuyehiro K. & Nishizawa A. 1994. Crustal structure and seismicity beneath the forearc off northeastern Japan. Journal of Geophysical Research 99, 22331 – 47.en_US
dc.identifier.citedreferenceTanioka Y., Ruff L. & Satake K. 1996. The Sanriku-oki, Japan, earthquake of December 28, 1994 (Mw 7.7): Rupture of an asperity unbroken in a previous earthquake. Geophysical Research Letters 23, 1465 – 8.en_US
dc.identifier.citedreferenceTanioka Y. & Satake K. 1996. Fault parameter of the 1896 Sanriku tsunami earthquake. Geophysical Research Letters 23, 1549 – 52.en_US
dc.identifier.citedreferenceUtsu T. 1974. Space-time pattern of large earthquakes occurring off the Pacific coast of the Japanese Island. Journal of Physics of the Earth 22, 325 – 42.en_US
dc.identifier.citedreferenceVON Huene, R., Klaeschen D., Cropp B. & Miller J. 1994. Tectonic structure across the accretionary and erosional parts of the Japan Trench margin. Journal of Geophysical Research 99, 22349 – 61.en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.