Show simple item record

The graininess of dark matter haloes

dc.contributor.authorZemp, Marcelen_US
dc.contributor.authorDiemand, Jürgen_US
dc.contributor.authorKuhlen, Michaelen_US
dc.contributor.authorMadau, Pieroen_US
dc.contributor.authorMoore, Benen_US
dc.contributor.authorPotter, Dougen_US
dc.contributor.authorStadel, Joachimen_US
dc.contributor.authorWidrow, Lawrenceen_US
dc.date.accessioned2010-06-01T20:56:08Z
dc.date.available2010-06-01T20:56:08Z
dc.date.issued2009-04-01en_US
dc.identifier.citationZemp, Marcel; Diemand, JÜrg; Kuhlen, Michael; Madau, Piero; Moore, Ben; Potter, Doug; Stadel, Joachim; Widrow, Lawrence (2009). "The graininess of dark matter haloes." Monthly Notices of the Royal Astronomical Society 394(2): 641-659. <http://hdl.handle.net/2027.42/74030>en_US
dc.identifier.issn0035-8711en_US
dc.identifier.issn1365-2966en_US
dc.identifier.urihttps://hdl.handle.net/2027.42/74030
dc.description.abstractWe use the recently completed one billion particle Via Lactea II Λ cold dark matter simulation to investigate local properties like density, mean velocity, velocity dispersion, anisotropy, orientation and shape of the velocity dispersion ellipsoid, as well as the structure in velocity space of dark matter haloes. We show that at the same radial distance from the halo centre, these properties can deviate by orders of magnitude from the canonical, spherically averaged values, a variation that can only be partly explained by triaxiality and the presence of subhaloes. The mass density appears smooth in the central relaxed regions but spans four orders of magnitude in the outskirts, both because of the presence of subhaloes as well as of underdense regions and holes in the matter distribution. In the inner regions, the local velocity dispersion ellipsoid is aligned with the shape ellipsoid of the halo. This is not true in the outer parts where the orientation becomes more isotropic. The clumpy structure in local velocity space of the outer halo cannot be well described by a smooth multivariate normal distribution. Via Lactea II also shows the presence of cold streams made visible by their high 6D phase space density. Generally, the structure of dark matter haloes shows a high degree of graininess in phase space that cannot be described by a smooth distribution function.en_US
dc.format.extent21418689 bytes
dc.format.extent3109 bytes
dc.format.mimetypeapplication/pdf
dc.format.mimetypetext/plain
dc.publisherBlackwell Publishing Ltden_US
dc.rightsJournal compilation © 2009 RASen_US
dc.subject.otherMethods: N -Body Simulationsen_US
dc.subject.otherMethods: Numericalen_US
dc.subject.otherGalaxies: Haloesen_US
dc.subject.otherGalaxies: Kinematics and Dynamicsen_US
dc.subject.otherGalaxies: Structureen_US
dc.subject.otherDark Matteren_US
dc.titleThe graininess of dark matter haloesen_US
dc.typeArticleen_US
dc.subject.hlbsecondlevelAstronomyen_US
dc.subject.hlbtoplevelScienceen_US
dc.description.peerreviewedPeer Revieweden_US
dc.contributor.affiliationumDepartment of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109, USAen_US
dc.contributor.affiliationotherDepartment of Astronomy and Astrophysics, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95064, USAen_US
dc.contributor.affiliationotherSchool of Natural Sciences, Institute for Advanced Study, Einstein Lane, Princeton, NJ 08540, USAen_US
dc.contributor.affiliationotherInstitute for Theoretical Physics, University Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerlanden_US
dc.contributor.affiliationotherDepartment of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6, Canadaen_US
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/74030/1/j.1365-2966.2008.14361.x.pdf
dc.identifier.doi10.1111/j.1365-2966.2008.14361.xen_US
dc.identifier.sourceMonthly Notices of the Royal Astronomical Societyen_US
dc.identifier.citedreferenceBailin J. et al., 2005, ApJ, 627, L17en_US
dc.identifier.citedreferenceBertschinger E., 2001, ApJS, 137, 1en_US
dc.identifier.citedreferenceBett P., Eke V., Frenk C. S., Jenkins A., Helly J., Navarro J., 2007, MNRAS, 376, 215en_US
dc.identifier.citedreferenceStiff D., Widrow L. M., 2003, Phys. Rev. Lett., 90, 211301en_US
dc.identifier.citedreferenceStiff D., Widrow L. M., Frieman J., 2001, Phys. Rev. D, 64, 083516en_US
dc.identifier.citedreferenceVan Hese E., Baes M., Dejonghe H., 2009, ApJ, 690, 1280en_US
dc.identifier.citedreferenceVogelsberger M., White S. D. M., Helmi A., Springel V., 2008, MNRAS, 385, 236en_US
dc.identifier.citedreferenceZemp M., Stadel J., Moore B., Carollo C. M., 2007, MNRAS, 376, 273en_US
dc.identifier.citedreferenceZemp M., Moore B., Stadel J., Carollo C. M., Madau P., 2008, MNRAS, 386, 1543en_US
dc.identifier.citedreferenceZhang M., Magorrian J., 2008, MNRAS, 387, 1719en_US
dc.identifier.citedreferenceAfshordi N., Mohayaee R., Bertschinger E., 2008, preprint ( arXiv:0811.1582 )en_US
dc.identifier.citedreferenceAllgood B., Flores R. A., Primack J. R., Kravtsov A. V., Wechsler R. H., Faltenbacher A., Bullock J. S., 2006, MNRAS, 367, 1781en_US
dc.identifier.citedreferenceBaes M., van Hese E., 2007, A&A, 471, 419en_US
dc.identifier.citedreferenceBinney J., Tremaine S., 1987, Galactic Dynamics, 3rd edn. Princeton Univ. Press, Princeton, NJ, USAen_US
dc.identifier.citedreferenceCappellari M. et al., 2007, MNRAS, 379, 418en_US
dc.identifier.citedreferenceCasetti-Dinescu D. I., Carlin J. L., Girard T. M., Majewski S. R., PeÑarrubia J., Patterson R. J., 2008, AJ, 135, 2013en_US
dc.identifier.citedreferenceCole S., Lacey C., 1996, MNRAS, 281, 716en_US
dc.identifier.citedreferenceCole N. et al., 2008, ApJ, 683, 750en_US
dc.identifier.citedreferenceColÍn P., Klypin A. A., Kravtsov A. V., 2000, ApJ, 539, 561en_US
dc.identifier.citedreferenceDehnen W., McLaughlin D. E., 2005, MNRAS, 363, 1057en_US
dc.identifier.citedreferenceDiemand J., Kuhlen M., 2008, ApJ, 680, L25en_US
dc.identifier.citedreferenceDiemand J., Moore B., Stadel J., 2004, MNRAS, 352, 535en_US
dc.identifier.citedreferenceDiemand J., Madau P., Moore B., 2005, MNRAS, 364, 367en_US
dc.identifier.citedreferenceDiemand J., Zemp M., Moore B., Stadel J., Carollo C. M., 2005, MNRAS, 364, 665en_US
dc.identifier.citedreferenceDiemand J., Kuhlen M., Madau P., 2006, ApJ, 649, 1en_US
dc.identifier.citedreferenceDiemand J., Kuhlen M., Madau P., 2007, ApJ, 657, 262en_US
dc.identifier.citedreferenceDiemand J., Kuhlen M., Madau P., Zemp M., Moore B., Potter D., Stadel J., 2008, Nat, 454, 735en_US
dc.identifier.citedreferenceDubinski J., Carlberg R. G., 1991, ApJ, 378, 496en_US
dc.identifier.citedreferenceFairbairn M., Schwetz T., 2009, JCAP, 01, 037en_US
dc.identifier.citedreferenceFranx M., Illingworth G., de Zeeuw T., 1991, ApJ, 383, 112en_US
dc.identifier.citedreferenceFukushige T., Makino J., 2001, ApJ, 557, 533en_US
dc.identifier.citedreferenceGini C., 1912, VariabilitÀ e mutabilitÀ. Libreria Eredi Virgilio Veschien_US
dc.identifier.citedreferenceHansen S. H., Moore B., 2006, New Astron., 11, 333en_US
dc.identifier.citedreferenceHansen S. H., Moore B., Zemp M., Stadel J., 2006, JCAP, 1, 14en_US
dc.identifier.citedreferenceHelmi A., White S. D., Springel V., 2002, Phys. Rev. D, 66, 063502en_US
dc.identifier.citedreferenceHelmi A., White S. D. M., Springel V., 2003, MNRAS, 339, 834en_US
dc.identifier.citedreferenceHernquist L., 1993, ApJS, 86, 389en_US
dc.identifier.citedreferenceIbata R. A., Lewis G. F., Irwin M. J., Quinn T., 2002, MNRAS, 332, 915en_US
dc.identifier.citedreferenceKamionkowski M., Kinkhabwala A., 1998, Phys. Rev. D, 57, 3256en_US
dc.identifier.citedreferenceKamionkowski M., Koushiappas S. M., 2008, Phys. Rev. D, 77, 103509en_US
dc.identifier.citedreferenceKatz N., 1991, ApJ, 368, 325en_US
dc.identifier.citedreferenceKatz N., White S. D. M., 1993, ApJ, 412, 455en_US
dc.identifier.citedreferenceKazantzidis S., Magorrian J., Moore B., 2004, ApJ, 601, 37en_US
dc.identifier.citedreferenceKnebe A., Wießner V., 2006, PASA, 23, 125en_US
dc.identifier.citedreferenceKuhlen M., Diemand J., Madau P., 2007, ApJ, 671, 1135en_US
dc.identifier.citedreferenceKuhlen M., Diemand J., Madau P., 2008, ApJ, 686, 262en_US
dc.identifier.citedreferenceLorenz M. O., 1905, PASA, 9, 209en_US
dc.identifier.citedreferenceMartÍnez-Delgado D., PeÑarrubia J., Jurić M., Alfaro E. J., Ivezić Z., 2007, ApJ, 660, 1264en_US
dc.identifier.citedreferenceMoore B., Governato F., Quinn T., Stadel J., Lake G., 1998, ApJ, 499, L5en_US
dc.identifier.citedreferenceMoore B., CalcÁneo-RoldÁn C., Stadel J., Quinn T., Lake G., Ghigna S., Governato F., 2001, Phys. Rev. D, 64, 063508en_US
dc.identifier.citedreferenceNavarro J. F., Abadi M. G., Steinmetz M., 2004, ApJ, 613, L41en_US
dc.identifier.citedreferenceNavarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563en_US
dc.identifier.citedreferenceParticle Data Group 2008, Phys. Lett. B, 667, 212en_US
dc.identifier.citedreferenceSharma S., Steinmetz M., 2005, ApJ, 628, 21en_US
dc.identifier.citedreferenceSharma S., Steinmetz M., 2006, MNRAS, 373, 1293en_US
dc.identifier.citedreferenceSiegal-Gaskins J. M., Valluri M., 2008, ApJ, 681, 40en_US
dc.identifier.citedreferenceSpergel D. N. et al., 2007, ApJS, 170, 377en_US
dc.identifier.citedreferenceStadel J. G., 2001, PhD Thesis, Univ. Washingtonen_US
dc.identifier.citedreferenceStadel J., Potter D., Moore B., Diemand J., Madau P., Zemp M., Kuhlen M., Quilis V., 2008, MNRAS, submitted ( arXiv:0808.2981 )en_US
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.